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Summary. This paper describes how Smoothed Particle Hydrodynamics can be applied
to problems involving fluids and solids where there may be more than one phase, and more
than one material. The advantage of replacing continuum fluids by moving particles is
that free surfaces and splash require no special treatment. In addition the advection of
material is treated very accurately. Examples of its application include fluids in containers
with complicated geometry, free surfaces, and moving bodies.

1 INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a numerical method which replaces a fluid
or an elastic body by a set of particles. The particles may be thought of either as real
particles, or as moving interpolation points. The key feature of the method is that spatial
derivatives of quantities can be estimated without using a grid by means of a technique
known as kernel estimation. The derivatives can be found from particle information even
though the positions of the particles may be disordered. As a result, free surface problems
such as breaking waves present no problems. The method is easily extended to more than
one fluid or to bodies floating in the fluid. Another attractive aspect of SPH is in the
simulation of mixing. If a scalar property is assigned to some of the particles, for examples
chemical type, they will carry that property with them. As a result advection is treated
very accurately. Rigid bodies moving in the fluid can also be treated in a straight forward
way. In the case of fracture SPH has been shown to be very effective because it can move
seamlessly from the continuum to a set of fragments. Many of the details which cannot
be covered in this paper are given in reviews 4,5.
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2 KERNEL ESTIMATION

We begin with a set of particles each with some property A and our aim is to estimate
A(r) for any point r using the values of A and the coordinates of each particle. We start
with the following exact result for any quantity A(r) which may be a scalar, vector or
tensor

A(r) =
∫
A(r′δ(r− r′)dr′, (1)

where dr denotes an element of volume, and the Delta function δ(q) has the following
properties ∫

δ(q)dq = 1. (2)

δ(q) is zero except where |q| = 0. While this result is exact we cannot use it directly
because functions of this form cannot be integrated numerically. Instead we replace the
Delta function by a smooth function W (q, h) which becomes a Delta function when h→ 0
and satisfies the condition ∫

W (q, h)dq = 1, (3)

There are infinitely many such functions (4,5,7) but it helps to keep in mind a Gaussian in
one dimension which has the form

1

h
√
π
e−q

2/h2

. (4)

The function W is called the kernel. We can now estimate A(r) by

A(r) =
∫
A(r′)W (r− r′)dr′. (5)

In order to evaluate this integral we replace the volume integration by an integration over
mass elements dm using dm = ρdr, where ρ is the density. We then get the following
summation interpolant for the function A

A(r) =
∑
a

ma

ρa
A(ra)W (r− ra, h), (6)

where the summation is over all the fluid particles, and a denotes a particle label. The
interpolant estimates A(r) by a function which is analytic if the kernel W is an analytic
function. As a consequence derivatives of the function A can be calculated exactly. A
discussion of how this is done for the equations of fluid dynamics is given in the review
articles cited earlier.
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3 EQUATIONS OF MOTION

The acceleration equation can be obtained directly from the equations of fluid dynamics
or by using a Lagrangian. Whichever of these approaches is used the Euler equation for
a particle a in a homogeneous fluid in the absence of boundaries takes the form

dva
dt

= −
∑
b

mb

(
Pa
ρ2
a

+
Pb
ρ2
b

)
∇aWab, (7)

and the continuity equation becomes

dρa
dt

=
∑
b

mb(vb − vb) · ∇bWab. (8)

where Wab denotes W (ra − rb, h). A slightly different form of these equations is used
when there is more than one fluids with very different densities, as in the case of air and
water, or fresh and salty water. These equations can be integrated with methods which
have been worked out for molecular dynamics. The SPH equations conserve linear and
angular momentum when they should and they approximately conserve a discrete version
of the circulation theorem. Provided a time stepping scheme such as the Verlet symplectic
method the energy is conserved to second order in the time step.

We have left aside the question of how to calculate P . The original application of
SPH to nearly incompressible fluids such as water used a slightly compressible equation
of state with a speed of sound below the real speed of sound but large enough to ensure
the density fluctuations were small, typically ∼ 1% . This can be achieved by taking the
speed of sound to be 10 times the largest fluid speed. A number of studies have discussed
exactly incompressible SPH (2,8)

3.1 Viscous forces

Viscosity can be included by replacing (7) by

dva
dt

= −
∑
b

mb

(
Pa
ρ2
a

+
Pb
ρ2
b

+ Πab

)
∇aWab, (9)

where Πab can take a number of forms but the following is typical

Πab = −8νvab · rab
ρ̄abh|rab|

, (10)

where ν is the kinematic viscosity coefficient, and ρ̄ab = 1
2
(ρa + ρb). If the system has

several fluids with different viscosities then this viscous term is replaced by

Πab = − 16νaνbvab · rab
(νaρa + νbρb)h|rab|

, (11)

This form of the viscosity is Galilean invariant (as are the original equations), it guarantees
that the viscous dissipation is positive definite, and it vanishes for rigid rotation. The
continuum equivalent (3) is a shear and a bulk viscosity.
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Figure 1: The particle positions and velocities of a cylinder rising inside a basin. Note the fluid SPH
particles running off the rising cylinder and the vortices which form behind it.
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3.2 Boundaries

A variety of techniques have been used for boundaries. These include ghost or image
particles or boundary force particles. In the case of the latter the boundaries exert forces
on the fluid in a manner similar to the technique known as the Immersed Boundary
Method. For the examples shown here the acceleration equation becomes

dva
dt

= −
∑
η

mη

(
Pa
ρ2
a

+
Pb
ρ2
b

+ Πaη

)
∇aWaη +

∑
j

mjrajf(|raj|), (12)

where now the summation is over both the fluid SPH particles and the boundary force
particles. The function f is a smooth function which decreases rapidly with distance from
the boundary (6)

Figure 2: The particle positions and velocities of 3 linked bodies moving through a fluid with specified
changes of the angles between the bodies. The velocity arrows of the particles start on the particles.

4 APPLICATIONS

In this section we show some characteristic SPH simulations which indicate the flexi-
bility of the method.
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4.1 Buoyant cylinder in a basin

We consider the rise of a buoyant cylinder in a basin 6. The boundaries of the basin
and the cylinder are specified by boundary force particles. The motion of the cylinder
is determined by the forces exerted on it by means of the forces on its boundary force
particles. Figure 1 shows the cylinder after it has floated up and through the free surface.
The fluid spilling off the cylinder can be seen as can the two vortices on each side of the
cylinder.

Figure 3: The positions of the SPH particles forming a bubble of radius 1m rising in a tank . The bubble
is initially circular then deforms to produce the shape shown with small parts of the bubble left behind
as trailing bubbles.

4.2 Swimming linked bodies

Linked bodies with specified time variation of the angles between them move through
a fluid like a fish (3). The present example shown in figure 2 involves three bodies of
different size in the form of ellipses. The bodies are connected by an elastic skin formed
of SPH skin particles which interact with the fluid and with the body. Because of the
connection between the bodies the equations of motion involve constraints. In the present
case these constraints were taken care of by using Lagrange multipliers. This problem is
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not only of interest to Zoologists working on marine animals but also to marine engineers
designing underwater marine vehicles.

4.3 Large air bubbles in water

There have been a number of successful applications of SPH to air and water starting
with 1. A simpler version was introduced recently for large bubbles where surface tension
can be neglected. An example is shown in figure 3 where a bubble intially in the form of
a circle of radius 1m rises in a tank of width 6m and height 10m. The bubble eventually
forms a shape like

⋂
then the end sections break off and the remainder forms a semi

circle.The results are in good agreement with level set calculations.

5 CONCLUSIONS

SPH has become a standard method for the solution of complex problems in fluid
dynamics. It is readily extended to physical problems that involve multiple fluids and
bodies and the change of thermodynamics state of the material. Examples of this latter
problem are freezing salt solutions, the solidification of lava and the effects of surfactants
on surface tension. References to these simulations can be found in the review articles,
and further information can be found on the SPHERIC website. SPH has also become
one of the most powerful techniques for the simulation of special effects in movies. The
reader is invited to inspect the website of the Spanish company NextLimit (Madrid) that
has used SPH for numerous movies.
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