
XVIII International Conference on Water Resources
CMWR 2010

J. Carrera (Ed)
c©CIMNE, Barcelona, 2010

FINITE VOLUMES FOR THE SIMULATION OF
UNSTEADY SHALLOW WATER FLOWS

P. Garcia-Navarro∗, J. Murillo†

∗Universidad de Zaragoza
Maria de Luna 3, 50018 Zaragoza, Spain

e-mail: pigar@unizar.es, web page: http://ghc.unizar.es

†Universidad de Zaragoza
Maria de Luna 3, 50018 Zaragoza, Spain

e-mail: Javier.Murillo@unizar.es, web page: http://ghc.unizar.es

Key words: Advanced numerical methods, water resources, model predictions

Summary. When applying the unsteady shallow water model to the simulation of over-
land flow in urban flooding problems it is necessary to handle correctly all kind of situ-
ations related to the complex geometry that can appear. The numerical model used to
solve the system of equations has to provide well balanced solutions (equilibrium in cases
of still water) and to maintain non-negative water depths for simulations involving wetting
and drying transitions. Due to the complex topographic features involved in some cases,
strong discontinuities in the bed elevation may appear, and as a result the suitability of
the numerical model employed can be compromised. Godunov methods have been found
a reliable tool to simulate realistic scenarios but, to ensure a correct performance of the
numerical solution in all cases, the approximations involved to generate the numerical
method have to be revisited. This revision results in new approximate solutions and a
complete definition of the stability region avoiding additional tuning parameters com-
monly found in literature. Also, the proposed new solver indicates that the definition of
well-balanced equilibrium in trivial cases is not sufficient to provide correct results: it is
necessary to provide discrete evaluations of the source term that ensure energy dissipating
solutions when demanded.

1 INTRODUCTION

There is a wide range of physical situations, such as flow in open channels and rivers,
tsunami and flood modeling, that can be mathematically represented by first-order non-
linear systems of partial differential equations, whose derivation involves an assumption
of the shallow water type. The system of equations in realistic shallow water models
includes advective as well as source terms.
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For sometime it has been accepted that the discretization of source terms can be as
challenging as that of the non-linear advection terms. It must be said that for most cases,
even naive discretizations of the source terms work reasonably well, but there are some
well documented situations in which only sophisticated schemes can perform adequately.
When solving real problems one is likely to encounter all sorts of situations, with a high
probability that naive schemes will compromise the quality and reliability of the solution.

When incorporating the presence of the source terms in a given specific finite volume
scheme (Roe’s scheme is used here) the main focus has been traditionally put on how the
numerical scheme can be modified so that it maintains a discrete balance between flux and
source terms. In the context of the discretization of hyperbolic systems of conservation
laws a fundamental point has been to get schemes that satisfy the preservation of steady-
states such as still water equilibrium in the context of the shallow water system. The
difficulty to build such schemes was pointed out by several authors and led to the notion
of well-balanced schemes [20, 9, 19].

In this framework the development of robust and efficient explicit finite volume models
of shallow water flow has been the matter of recent research in the computational hy-
draulics literature. A few efforts have been reported on the search for the best methods
able to preserve the exact conservation property (C-property) [20] in presence of flow
over irregular geometries [4, 11]. When dealing with simulation problems that involve
bed variations and transient flow over a dry bed, these flow features impose a heavier
restriction than the classical Courant-Friedrichs-Lewy (CFL) condition [6, 9, 19] on the
time step size that may lead to inefficient computations. It is possible to avoid the neces-
sity of reducing the time step and, at the same time, preventing instability and ensuring
conservation at all times by a suitable flux difference redistribution [11, 13].

It can also be argued that the presence of source terms is the reason for the construc-
tion of new weak solutions appropriate to the nature of the equations, rather than the
use of those constructed for the simple, homogeneous case. Even ensuring the discrete
equilibrium formulated in well-balanced schemes, the direct application of the conclusions
derived for the homogeneous case to cases with source terms leads to important difficul-
ties. One of the most dramatic is the appearance of negative values of water depth, not
only in wet/dry fronts, but also in initially wet/wet Riemann problems.

Gravity and friction are the main forces driving open channel flows. When using
the shallow water model in hydraulic simulation, these forces participate in the dynamic
equation as sources/sinks of momentum. In cases of steady shallow water flow with non-
zero velocity, the discrete balance must be revisited [12].

George [7] presented a well balanced augmented approximate Riemann solver for the
extended one dimensional shallow water equations including in the original solution vector
two new variables: momentum flux and bottom surface. The solver is well-balanced and
maintains a large class of steady states by the use of a properly defined steady state
wave: a stationary jump discontinuity in the Riemann solution that acts as a source
term. The idea of a stationary jump discontinuity is adapted to the method proposed
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in this work where the original system is not enlarged. without modifying the original
solution vector of conserved quantities (mass and momentum), we present augmented
approximate Riemann solvers for the shallow water equations in the presence of a variable
bottom surface and friction. They belong to the class of simple approximate solvers that
use a set of propagating jump discontinuities, or waves, to approximate the true Riemann
solution. Typically, a simple solver for a system of m conservation laws uses m such
discontinuities. We present a three wave solver for the 1D shallow water equations system
(two equations) and a four wave solver for the 2D case (three equations). In this work we
go back to the original ideas of Roe using the upwind discretization of the source terms
proposed by [20].

2 1D SYSTEMS OF CONSERVATION LAWS

A hyperbolic nonlinear systems of equations without source terms in 1D, can be ex-
pressed in integral form in terms of the conserved variable U and the flux F as:

∂

∂t

∫ x2

x1

Udx + F|x2
− F|x1 = 0 (1)

where x1, x2 are the limits of a generic control volume. The differential formulation is
obtained assuming smooth variation of the variables and an infinitesimal width of the
control volume:

∂U

∂t
+

∂F

∂x
= 0 (2)

and from this formulation it is possible to define a Jacobian matrix J

J =
dF

dU
(3)

Assuming that (1) is strictly hyperbolic with two real eigenvalues λ1, λ2 and eigenvec-
tors e1, e2, it is possible define two matrices P = (e1, e2) and P−1 with the property that
they diagonalize the Jacobian J

J = PΛP−1 (4)

This means that the solution of a given a Riemann problem for (2) with initial values
UL,UR, is a similarity solution. Figure 2 depicts the classical Riemann problem for a
typical 2x2 homogeneous non-linear system, for which it is assumed that the left wave is a
rarefaction and the right wave is a shock. The top frame shows the initial condition for a
single component Ui of the vector of unknowns U. The bottom frame of Figure 2 depicts
the structure of the corresponding solution in the x − t plane; characteristic curves are
straight lines.
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Classical Riemann Problem

x = 0
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Figure 1: The classical Riemann problem for a typical 2x2 non-linear homogeneous system. Top frame:
initial condition at t = 0 for a single component U of the vector of unknowns U. Bottom frame: structure
of the solution in the x − t plane.

Figure 2 top depicts the structure of the solution solution after a time ∆t. The solution
has evolved in space according to the position of the rays that define the solution. In x = 0
the solution is constant for any value of t.

In order to obtain a numerical solution of system (2) we divide the domain in com-
putational cells of constant size ∆x: the i-th cell is defined by [xi−1/2, xi+1/2] where
xi+1/2 = i∆x and the position of the center of the cell xi is defined by (i − 1/2)∆x.
Let ∆t be the time step and tn = n∆t a generic time; assuming the usual notation we
indicate with Un

i the cell-average value of the solution U(x, t) for the ith cell at time tn:

Un
i =

1

∆x

∫ xi+1/2

xi−1/2

U(x, tn)dx. (5)

Un
i is therefore a piecewise constant approximation of the solution at time tn,

To introduce the finite volume scheme, (2) is integrated in a volume or grid cell Ω that
corresponds to an interval ∆x in 1D :
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Classical Riemann Problem
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Figure 2: The classical Riemann problem for a typical 2x2 non-linear homogeneous system. Top frame:
solution at t = ∆t for a single component U of the vector of unknowns U. Bottom frame: structure of
the solution in the x − t plane.
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Figure 3: Piecewise constant approximation of the solution U
n
i at time tn.

∂

∂t

∫

Ω
UdΩ +

∫

Ω
(
−→∇F)dΩ = 0 (6)

and applying the Gauss theorem becomes

∂

∂t

∫

Ω
UdΩ +

∮

∂Ω
Fndl = 0 (7)
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where n is the outward unit normal vector to the volume Ω, that in the 1D approach
leads to the following formulation:

Un+1
i = Un

i − ∆t

∆x

(
F∗

i+1/2 − F∗
i−1/2

)
(8)

where F∗
i+1/2 is a suitable numerical flux defined in the cell edge or node i + 1/2, as

shown in Figure 2.

U

U
U

i i+1i-1 i-1/2 i+1/2

i-1

i
i+1

i-1/2 i+1/2FF * *

Figure 4: Contour integration domain of grid cell i .

For a nonlinear system of equations as (2) it is very important that the method be in
conservative form, in order to ensure that weak solutions of the system of conservation
laws are properly approximated. Recall that this form is derived directly from the inte-
gral form of the conservation laws in (1), wich is the correct equation to model when the
solution is discontinous (as in shocks).

In the Godunov method the quantity F∗
i+1/2 is determined by

F∗
i+1/2 = F

(
U∗

i+1/2

)
(9)

where U∗
i+1/2 is found by solving the Riemann Problem (RP) between states Ui and

Ui+1. The value U∗
i+1/2 at x = xi+1/2 in this Riemann solution is constant as the Riemann

solution is a similarity solution. Then (8) can be expressed as

Un+1
i = Un

i − ∆t

∆x

(
F
(
U∗

i+1/2

)
− F

(
U∗

i−1/2

))
(10)

as shown in Figure 2.
The first order Godunov method, provides a way to update the piecewise uniform

quantities one time-step in the following way: the piecewise approximations (5), are con-
sidered as initial values of local RPs. The RP solutions are evolved for one time step; the
resulting solution is cell-averaged again obtaining the piecewise solution at the new time
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Figure 5: Contour integration domain of grid cell i .

level tn+1.
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Figure 6: Top frame: solution at t = ∆t for a single component U of the vector of unknowns U. Bottom
frame: structure of the solution in the x − t plane.

The evolution of the solution U(x, t) at every local RP can be also analysed considering
a new control volume defined by a time interval [0, ∆t] and a space interval [−X, X] ,
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where

−X ≤ λmin∆t, X ≥ λmax∆t (11)

being λmin∆t, λmax∆t the positions of the slowest and the fastest wave at t = ∆t. The
initial volume at time t = 0 given by X (Ui+1 + Ui) changes due to the action of fluxes
F(Ui+1) and F(Ui) in time. The local RP is defined by

∂U

∂t
+ ∂F

∂x
= 0

U(x, 0) =

{
Ui if x < 0

Ui+1 if x > 0

(12)

Integrating (12) over the control volume [−X, X] × [0, ∆t] ,where X satisfies (11) we
obtain

∫ x=+X

x=−X

∫ t=∆t

t=0

(
∂U

∂t
+

∂F

∂x

)
dxdt = 0 (13)

or

∫ +X

−X
[U(x, ∆t) −U(x, 0)] dx +

∫ ∆t

0
(F(Ui+1) − F(Ui)) dt = 0 (14)

that can also be written

∫ +X

−X
U(x, ∆t)dx − X (Ui+1 + Ui) + (F(Ui+1) − F(Ui)) ∆t = 0 (15)

The solution U at time t = ∆t, U(x, ∆t), satisfies therefore the following property:

∫ +X

−X
U(x, ∆t) dx = X (Ui+1 + Ui) − (F(Ui+1) − F(Ui)) ∆t (16)

This property provides a condition over the exact solution, although the exact solution
is not described yet. The Godunov method provides the way to update the solution but
does not provide an exact solution for any general RP in any system of equations. In
certain cases, it is possible to reconstruct the exact solution U(x, t) but its computation
is extremily expensive and in most cases impossible. Another alternative is to use an
approximate solution of U(x, t), that we will referred to as Û(x, t).

2.1 Approximate solution of the Riemann problem

In the Roe approach, the solution of each RP is obtained from the exact solution of
a locally linearized problem (ARP). This solution must fulfill the so called Consistency
Condition, i.e. that the integral of the solution Û(x, t) of the ARP over a suitable control
volume must be equal to the integral of the exact solution of (12) over the same control
volume:

8



P. Garcia-Navarro and J. Murillo

∫ +X

−X
Û(x, ∆t) dx =

∫ +X

−X
U(x, ∆t) dx (17)

or:

∫ +X

−X
Û(x, ∆t) dx = X (Ui+1 + Ui) − (F(Ui+1) − F(Ui)) ∆t (18)

In the Roe formulation, RP (12) is approximated by using the following linear ARP:

∂Û

∂t
+ J∗∂Û

∂x
= 0

Û(x, 0) =

{
Ui if x < 0

Ui+1 if x > 0

(19)

where J∗(Ui,Ui+1) is a constant matrix. Integrating (52) over the control volume [−X, X]×
[0, ∆t] ,where X satisfies (11):

∫ x=+X

x=−X

∫ t=∆t

t=0

(
∂Û

∂t
+ J∗∂Û

∂x

)
dxdt = 0 (20)

or

∫ x=+X

x=−X
Û(x, 1)dx − X (Ui+1 + Ui) + J∗ (Ui+1 − Ui) ∆t = 0 (21)

Then, the solution Û at time t = ∆t, Û(x, ∆t), satisfies the following property:

∫ +X

−X
Û(x, 1) dx = X (Ui+1 + Ui) − J∗(Ui,Ui+1) (Ui+1 − Ui)∆t (22)

Since we want to satisfy (50), the constraint that follows is:

δF = J∗
i+1/2δUi+1/2 (23)

with δFi+1/2 = F(Ui+1)−F(Ui) and δUi+1/2 = Ui+1−Ui Moreover, two more conditions
are standard requirements for the Roe method.

J∗
i+1/2(Ui+1,Ui) is diagonalizable with real eigenvalues

J∗
i+1/2(Ui+1,Ui) → J∗

i+1/2(Ui) smoothly as Ui+1 → Ui
(24)

Considering that it is possible to define an approximate Jacobian J̃i+1/2, character-

ized by a set of approximate eigenvalues λ̃1, λ̃2 and eigenvectors ẽ1, ẽ2, two approximate
matrices, P̃ = (ẽ1, ẽ2) and P̃−1 are built with the following property:

J̃i+1/2 = P̃i+1/2Λ̃i+1/2P̃
−1
i+1/2 (25)
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The difference in vector U across the grid edge is projected onto the matrix eigenvectors
basis:

δUi+1/2 = P̃i+1/2Ai+1/2 (26)

with Ai+1/2 = (α1, α2)
T
i+1/2. Expressing all terms more compactly:

δFi+1/2 =
Nλ∑

m=1

(
λ̃αẽ

)m

i+1/2
(27)

so that the desired matrix in (53) is

J∗
i+1/2 = (P̃Λ̃∗P̃−1)i+1/2 (28)

where Λ̃i+1/2 is a diagonal matrix with eigenvalues λ̃m
i+1/2 in the main diagonal:

Λ̃i+1/2 =

(
λ̃1 0

0 λ̃2

)

i+1/2

(29)

2.2 Application to the 1D shallow water equations

For the 1D shallow water equations the relevant integral formulation in (1) derives
from the depth-averaged equations of mass conservation and of momentum, with

U =

(
h
hu

)
F =

(
hu

hu2 + 1
2
gh2

)
(30)

where h represents the water depth, u the depth averaged component of the velocity
vector and g is the acceleration of the gravity. The above formulation is written in terms
of the unit discharge and not valid for arbitrary cross sections. In order to extend the
following discussion to general 1D problems [5] should be followed.

The Jacobian leads to two real eigenvalues λ1, λ2 and eigenvectors e1, e2,

λ1 = u − c λ2 = u + c

e1 =

(
1

u − c

)
e2 =

(
1

u + c

)
(31)

with c =
√

gh.
The approximate Jacobian J̃ [14] is

J̃i+1/2 =

(
0 1

c̃2 − ũ2 2ũ

)

i+1/2

δFi+1/2 = J̃i+1/2δUi+1/2 (32)

with
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c̃ =

√

g
hi + hi+1

2
ũ =

ui+1

√
hi+1 + ui

√
hi√

hi+1 +
√

hi

(33)

and the resulting sets of approximate eigenvalues and eigenvectors are

λ̃1 = ũ − c̃ λ̃2 = ũ + c̃

ẽ1 =

(
1

ũ − c̃

)
ẽ2 =

(
1

ũ + c̃

)
(34)

2.2.1 Two wave approximate Riemann solution

The solution for Û(x, t) is governed by the celerities in Λ̃i+1/2 and consists of three
regions. Depending on the flow conditions, the approximate solution that satisfies (50)
changes and the solution is given by

Û(x, t) =





Un
i if x − λ̃1t < 0

Ui+1/2 if x − λ̃1t > 0 and x − λ̃2t < 0

Un
i+1 if x − λ̃2t > 0

(35)

with

Ui+1/2(Ui+1,Ui) = Un
i + (αẽ)1

i+1/2

Ui+1/2(Ui+1,Ui) = Un
i+1 − (αẽ)2

i+1/2

(36)

According to this solution in the subcritical case, Figure 2.2.1, the solution is given by
U∗ = Ui+1/2, in the supercritical case with u > 0, Figure 2.2.1, the solution is given by
U∗ = Ui and in the supercritical case with u < 0, Figure 2.2.1, the solution is given by
U∗ = Ui+1

Following Godunov method these RP solutions are then evolved for a time equal to
the time step, the resulting solution is cell-averaged obtaining the piecewise solution at
the new time level tn+1. If both i and i + 1 are subcritical, the integral volume in cell
[0, ∆x] × [0, ∆t] is depicted in Figure 11. Focusing on the updating rule for cell i:

Un+1
i ∆x = Ui−1/2(λ̃

2
i−1/2∆t) +Un

i (∆x− λ̃2
i−1/2∆t + λ̃1

i+1/2∆t) +Ui+1/2(−λ̃1
i+1/2∆t) (37)

that can be rewritten as

Un+1
i ∆x = Un

i (∆x) + (Ui−1/2 −Un
i )(λ̃2

i−1/2∆t) + (Un
i −Ui+1/2)(λ̃

1
i+1/2∆t) (38)

and considering (36) the updated value Un+1
i is:
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Figure 7: Top frame: approximate solution at t = ∆t for h. Bottom frame: structure of the approximate
solution Û in the x − t plane for the subcritical case.

Un+1
i = Un

i − (αẽλ̃)2
i−1/2

∆t

∆x
− (αẽλ̃)1

i+1/2

∆t

∆x
(39)

In general Godunov’s method can be formulatted by meas of the flux difference in each
cell egde:

Un+1
i = Un

i −
(
(δF)+

i−1/2 + (δF)−i+1/2

) ∆t

∆x
(40)

where the fluxes in a general intercell edge i + 1/2 are computed as follows:

(δF)±i+1/2 =
Nλ∑

m=1

(
λ̃±αẽ

)m

i+1/2
(41)

accounting only for the in-going waves to the domain, by means of the upwinding of the
waves:

λ̃±,m
i+1/2 =

1

2
(λ̃ ± |λ̃|) (42)

Straightforward algebraic manipulation converts (64) to an equivalent numerical flux-
based finite volume scheme [8],
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Figure 8: Top frame: approximate solution at t = ∆t for h. Bottom frame: structure of the approximate
solution Û in the x − t plane for the supercritical case,u > 0 .

Un+1
i = Un

i − (F∗
i+1/2 − F∗

i−1/2)
∆t

∆x
(43)

in which the numerical flux (denoted by an asterisk) for first-order upwinding is given by

F∗
i+1/2 =

1

2
(Fi+1 + Fi) −

1

2

(
P|Λ̃|P−1δU

)

i+1/2
(44)

with a similar expression for F∗
i−1/2.

In Figure 11 the time step is small enough so that there is no interaction of waves from
neighboring Riemann problems. This would be necessary if we wanted to construct the
solution at Un+1

i in order to explicitly calculate the cell average (63). However, according
to [9], in order to use the flux formula (65) it is only necessary that the edge values Û(x, t)
remain constant in time over the entire time step, which allows a time step roughly twice
as large and the time step is limited by

∆t ≤ ∆tλ̃ ∆tλ̃ =
∆x

maxm=1,2 |λ̃m|
(45)
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Figure 9: Top frame: approximate solution at t = ∆t for h. Bottom frame: structure of the approximate
solution Û in the x − t plane for the supercritical case,u < 0 .

3 1D Systems of conservation laws with source terms

The discussion is next extended to hyperbolic nonlinear systems of equations with
source terms in 1D, that expressed in integral form are:

∂

∂t

∫ x2

x1

Udx + F|x2
− F|x1 −

∫ x2

x1

Sdx = 0 (46)

The differential formulation is obtained assuming smooth variation of the variables and
an infinitesimal width of the control volume:

∂U

∂t
+

∂F

∂x
= S (47)

In the case of systems of conservation laws with source terms we will assume that the
solution of a given RP for (47) with initial values Ui,Ui+1

∂U

∂t
+ ∂F

∂x
= S

U(x, 0) =

{
Ui if x < 0

Ui+1 if x > 0

(48)
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Figure 10: Control volume in the Godunov method

is also a similarity solution where the characteristic lines are also straight lines. Al-
thought we do not known the wave estruture of the solution, it is possible to integrate
(48)in a volume defined by a time interval [0, ∆t] and a space interval [−X, X], defining
X as in (11), also assuming that the solution is limited by the maximum and minimun of
the homogenous part of the PDE in (48).

∫ +X

−X
U(x, 1) dx = X (Ui+1 + Ui) − (F(Ui+1) − F(Ui))∆t +

∫ ∆t

0

∫ +X

−X
S dx dt (49)

Since the source term is not necessarily constant in time, we assume the following time
linearization of the Consistency Condition:

∫ +X

−X
Û(x, 1) dx = X (Ui+1 + Ui) −

(
F(Ui+1) − F(Ui)∆t − Si+1/2

)
(50)

where

Si+1/2 =
∫ +X

−X
S(x, 0) dx (51)

is a suitable numerical source vector.

In this formulation, RP (12) is approximated by using the following linear ARP:
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∂Û

∂t
+ J∗∂Û

∂x
= 0

Û(x, 0) =

{
Ui if x < 0

Ui+1 if x > 0

(52)

where J∗(Ui,Ui+1) is a constant matrix. Integrating (52) over the control volume [−X, X]×
[0, ∆t] ,where X satisfies (11):

∫ +X

−X
Û(x, 1) dx = X (Ui+1 + Ui) − J∗(Ui,Ui+1) (Ui+1 − Ui)∆t (53)

Since we want to satisfy (50), the constraint that follows is:

δFi+1/2 − Si+1/2 = J∗
i+1/2δUi+1/2 (54)

The difference in vector U across the grid edge is projected onto the matrix eigenvectors
basis and the same for the source term:

δUi+1/2 = P̃i+1/2Ai+1/2 Si+1/2 = P̃i+1/2Bi+1/2 (55)

with Ai+1/2 = (α1, α2)
T
i+1/2 and Bi+1/2 = (β1, β2)

T
i+1/2. Expressing all terms more com-

pactly:

δFi+1/2 − Si+1/2 =
Nλ∑

m=1

(
λ̃∗αẽ

)m

i+1/2
(56)

where

λ̃∗,m
i+1/2 = λ̃m

i+1/2 θm
i+1/2 θm

i+1/2 =

(
1 − β

λ̃α

)m

i+1/2

(57)

so that the desired matrix in (53) is

J∗
i+1/2 = (P̃Λ̃∗P̃−1)i+1/2 (58)

with Λ̃∗ = Λ̃Θ, where Λ̃i+1/2 is a diagonal matrix with eigenvalues λ̃m
i+1/2 in the main

diagonal:

Λ̃i+1/2 =

(
λ̃1 0

0 λ̃2

)

i+1/2

(59)

and Θi+1/2 is a diagonal matrix with θm
i+1/2 in the main diagonal:

Θi+1/2 =

(
θ1 0
0 θ2

)

i+1/2

(60)
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3.1 Application to the 1D shallow water equations with source terms

Including the relevant source terms in the 1D shallow water equations:

U =

(
h
hu

)
F =

(
hu

hu2 + 1
2
gh2

)
S =

(
0

pb

ρw
− τb

ρw

)
(61)

The source term of the system is split in two kind of terms. The terms pb and τb are
the pressure along the bottom and the shear stress in the x direction respectively, with
ρw the density of water. The above formulation is written in terms of the unit discharge
and not valid for arbitrary cross sections. In order to extend the following discussion to
general 1D problems [5] should be followed.

Assuminf a hydrostatic pressure distribution, the following differential equation for the
bottom slope can be obtained:

pb

ρw

= −gh
∂z

∂x
(62)

3.1.1 A three wave approximate Riemann solution

Depending on the flow conditions, three approximate solutions that satisfy (50), are
proposed. The solutions for Û(x, t) are governed by the celerities in Λ̃i+1/2 and each one
consists of four regions.

The details of the approximate Riemann solution for each case are provided in [?].
Following Godunov’s method these RP solutions are then evolved for a time equal to

the time step, the resulting solution is cell-averaged obtaining the piecewise solution at
the new time level tn+1. If both i and i + 1 are subcritical, the integral volume in cell
[0, ∆x] × [0, ∆t] is depicted in Figure 11. Focusing on the updating rule for cell i:

Un+1
i ∆x = U∗∗

i (λ̃2
i−1/2∆t) + Un

i (∆x − λ̃2
i−1/2∆t + λ̃1

i+1/2∆t) + U∗
i (−λ̃1

i+1/2∆t) (63)

that can be rewritten as

Un+1
i ∆x = Un

i (∆x) + (U∗∗
i − Un

i )(λ̃2
i−1/2∆t) + (Un

i − U∗
i )(λ̃

1
i+1/2∆t) (64)

and considering (36) the updated value Un+1
i is:

Un+1
i = Un

i − (θαẽλ̃)2
i−1/2

∆t

∆x
− (θαẽλ̃)1

i+1/2

∆t

∆x
(65)

Straightforward algebraic manipulation converts (64) to an equivalent numerical flux-
based finite volume scheme [8],

Un+1
i = Un

i − (F∗
i+1/2 − F∗

i−1/2)
∆t

∆x
+ (S−

i+1/2 + S+
i−1/2)

∆t

∆x
(66)
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Figure 11: Control volume in the Godunov method

in which the numerical flux (denoted by an asterisk) for first-order upwinding is given by

F∗
i+1/2 =

1

2
(Fi+1 + Fi) −

1

2

(
P|Λ̃|P−1δU

)

i+1/2
(67)

with a similar expression for F∗
i−1/2 and

S±
i+1/2 =

(
PI±P−1S

)

i+1/2
(68)

and I± = Λ−1 1
2
(Λ ± |Λ|).

In Figure 11 the time step is small enough so that there is no interaction of waves from
neighboring Riemann problems. This would be necessary if we wanted to construct the
solution at Un+1

i in order to explicitly calculate the cell average (63). If positivity of all
water depth values in the solutions is guaranteed, h∗∗

i ≥ 0 and h∗
i+1 ≥ 0, according to

[9], in order to use the flux formula (65) it is only necessary that the edge values Û(x, t)
remain constant in time over the entire time step, which allows a time step roughly twice
as large and the time step is limited by

∆t ≤ ∆tλ̃ ∆tλ̃ =
∆x

maxm=1,2 |λ̃m|
(69)

As the cell average is constructed averaging with the terms U∗∗
i and U∗

i+1, the appear-
ance of negative values of h∗∗

i and h∗
i+1 must be considered. Figure 12 represents a case

with a negative value of h∗∗
i+1 at a i + 1/2 edge, where the flow is locally subcritical as in

(35). As the approximate solutions used in each RP are independent, it is necessary to
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define the time step ensuring that the cell average value in the control volume [0, 1
2
∆x]

remains positive

hn+1
i+1

1

2
∆x = h∗∗

i+1(λ̃
2
i+1/2∆t) + hn

i+1(
1

2
∆x − λ̃2

i+1/2)∆t ≥ 0 (70)

leading to the following limit in the size of the time step

∆t ≤ ∆t∗∗ ∆t∗∗ =
1

2

∆x

λ̃2
i+1/2

hn
i+1

hn
i+1 − h∗∗

i+1

(71)

or in the case h∗
i < 0

∆t ≤ ∆t∗ ∆t∗ =
1

2

∆x

λ̃1
i+1/2

hn
i

hn
i − h∗

i

(72)

One case of special interest are wet/dry interfaces with discontinuous bed level, as
it is possible to generate negative water depths in the initially dry region of Û(x, t).
According to (71) or (72) the time step becomes nil in that case. To ensure positivity and
conservation of the solution for all cases the Godunov’s method is formulated as follows:

Un+1
i = Un

i −
(
(δF− S)+

i−1/2 + (δF− S)−i+1/2

) ∆t

∆x
(73)

where the fluxes in a general intercell edge i + 1/2 are computed as follows:

• If hn
i+1 = 0 and h∗∗

i+1 < 0 set:

(δF − S)−i+1/2 = (δF− S)i+1/2 (δF− S)+
i+1/2 = 0 (74)
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• If hn
i = 0 and h∗

i < 0 set:

(δF − S)+
i+1/2 = (δF− S)i+1/2 (δF− S)−i+1/2 = 0 (75)

• Otherwise set:

(δF − S)±i+1/2 =
Nλ∑

m=1

(
λ̃±θαẽ

)m

i+1/2
(76)

with

λ̃±,m
i+1/2 =

1

2
(λ̃ ± |λ̃|) (77)

The two main ways of formulating the Godunov type numerical solution for a system
are then presented as it was done before for the scalar case. Note that because the
numerical source integral cannot, in general, be written as a difference, it is not possible
to include it in the numerical flux difference formulation (66). This means that the balance
sought between flux derivatives and sources in the numerical flux based scheme can only
be achieved locally by balancing non-zero fluxes through the edges of the control volume
instead of setting every component to zero as in (73).

When in supercritical conditions values of h∗
i < 0 or h∗∗

i+1 < 0 appear, the cell averaging
in the Godunov method avoids negative values of h, as the source term does not participate
in the updating of the water depth. In consequence, the stability region becomes:

∆t ≤




min(∆t∗∗, ∆t∗, ∆tλ̃) if(λ̃1λ̃2)i+1/2 < 0

∆tλ̃ otherwise
(78)

where ∆t∗∗ is defined as in (71) if h∗∗
i+1 < 0 and hn

i+1 6= 0 and ∆t∗ is defined as in (72) if
h∗

i < 0 and hn
i 6= 0.

One result of Roe’s linearization is that the resulting approximate Riemann solution
consists of only discontinuities and Û(x, t) is constructed as a sum of jumps or shocks.
To avoid unphysical results the version of the Harten-Hyman entropy fix [18] is used. In
the case of left transonic rarefaction λ1

i < 0 < λ1
i+1, with λi = λ(Ui) and λi+1 = λ(Ui+1),

the jump associated to λ̃1
i+1/2 is decomposed into two new jumps,

λ̄1 = λ1
i

(λ1
i+1 − λ̃1)

(λ1
i+1 − λ1

i )
λ̂1 = λ1

i+1

(λ̃1 − λ1
i )

(λ1
i+1 − λ1

i )
(79)

with λ̄1 + λ̂1 = λ̃1, and λ̄1 < 0 and λ̂1 > 0 by definition.

This idea can be applied to the decomposition of the source term associated to β1

into two new values, β̄1 and β̂1. Their definition has to be done enforcing a conservative
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splitting of the source terms, β̄1 + β̂1 = β1. Numerically it is possible to force a splitting
proportional to the one performed on the λ̃1

i+1/2 wave, that is

β̄1 = β1 λ̄1

λ̃1
β̂1 = β1 λ̂1

λ̃1
(80)

but this option results in erroneous results and in a reduction of the time step size, as
the values of β̄1 and β̂1 as defined in (80) are much greater than the original one, β1, as
under these conditions λ̃1 is a travelling wave with almost nil velocity. The option used
in this work is

β̄1 = β1 β̂1 = 0 (81)

that preserves the stability region in (78), simply replacing λ̃1
i+1/2 by λ̄1

i+1/2.

For a right transonic rarefaction λ2
i < 0 < λ2

i+1, the entropy fix procedure is entirely

analogous to the left rarefaction case. The single jump in λ̃2 is split into two smaller
jumps λ̄2 and λ̂2

λ̄2 = λ2
i+1

(λ̃2 − λ2
i )

(λ2
i+1 − λ2

i )
λ̂2 = λ2

i

(λ2
i+1 − λ̃2)

(λ2
i+1 − λ2

i )
(82)

with λ̄2 > 0 and λ̂2 < 0 by definition. The source term is split enforcing

β2 = β2 β̄2 = 0 (83)

so the stability region in (78) is preserved, simply replacing λ̃2
i+1/2 by λ̄2

i+1/2.

3.2 Integration of the source term

The source term in (51) is expressed as

Si+1/2 =

(
0

pb

ρw
− τb

ρw

)

i+1/2

(84)

where pb

ρw
and τb

ρw
attend to the pressure and friction exerted on the bed respectively.

There is not a unique way to perform the numerical integral of the source term in (51).
Under the hypothesis of smooth variation of the variables and an infinitesimal width of
the control volume, it is possible to define the integral in (51) evaluating pb

ρw
as

(
pb

ρw

)a

i+1/2

= −g(h̃δz)i+1/2 (85)

with h̃ = 1/2(hi + hi+1). Assuming a piecewise representation of the bed level, another
possibility is to use the physical definition of the hydrostatic force exerted over the bed
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discontinuity so the pressure head depends only on the free-surface level. Attending to
this definition, (51) is defined using the following approach for pb

ρw
:

(
pb

ρw

)b

i+1/2

= −g

(
hj −

|δz′|
2

)
δz′ (86)

with

j =

{
i if δz ≥ 0

i + 1 if δz < 0
δz′ =





hi if δz ≥ 0 and di < zi+1

hi+1 if δz < 0 and di+1 < zi

δz otherwise
(87)

where d = (h+ z). Both approaches can be blended to provide another expression for the

thrust term, that we will refer to as
(

pb

ρw

)c
:

(
pb

ρw

)c

i+1/2

=






max
((

pb

ρw

)a
,
(

pb

ρw

)b
)

i+1/2
if δd δz ≥ 0 and ũδz > 0

(
pb

ρw

)b

i+1/2
otherwise

(88)

that considers the problems associated to flow across an upward step in overtopping waves.
In cases of still water with a continuous water level surface all three approximations of

the trust term, a, b and c, provide correct solutions for all values when constructing the
approximate solution Û(x, t), as in this particular case, Figure 13:

hn
i + zi = h∗

i + zi = h∗∗
i+1 + zi+1 = hn

i+1 + zi+1

(hu)n
i = (hu)∗i = (hu)∗∗i+1 = (hu)n

i+1 = 0
(89)

This is a particular case, and in cases of non zero velocity, differences among the
solutions provided by the source term integral in (pb/ρw)a, (pb/ρw)b and (pb/ρw)c arise.
One consequence of utmost importance is that they can generate negative values of water
depth in the inner regions of the weak solution. In wetting/drying fronts negative values
can be avoided if in each i+1/2 edge with discontinuous water level surface, characterized
by

hn
i + zi < zi+1, hn

i+1 = 0 (90)

or

hn
i+1 + zi+1 < zi, hn

i = 0 (91)

a zero velocity in the involved cells is enforced, un
i+1 = un

i = 0, in combination with
approach (pb/ρw)c. This procedure, that considers the cell edges characterized by (90) or
(91) as solid walls, will be referred to as approach (pb/ρw)c,w.

Regarding the friction term, the discretization based on [12] is applied
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Figure 13: Solution Û(x, t) in case of static equilibrium.

τb

ρw f,i+1/2

= g(h̃Sf )i+1/2∆x Sf,i+1/2 =

(
n2ũ|ũ|

max(hi, hi+1)4/3

)

i+1/2

(92)

The importance of the discrete equilibrium in cases of still water to provide well-
balanced schemes has been widely reported, but it is important to stress that with the
unified formulation of the source terms, the scheme becomes well balanced in steady
cases with no null velocity. According to numerical scheme (73), the stationary solution
is reached when all updating components of the linearized solution become nil, that is
(θα)m

i+1/2 = 0 for m = 1, 2, leading to a constant discharge in all zones of the weak
solution. In the subcritical case:

(hu)n
i = (hu)∗i = (hu)∗∗i+1 = (hu)n

i+1 6= 0 (93)

or in the supercritical case, with u > 0:

(hu)n
i = (hu)∗i+1 = (hu)∗∗i+1 = (hu)n

i+1 6= 0 (94)

3.3 Reconstruction of the approximate solution Û(x, t)

The linearization of the source terms leads to extremely small values of the allowable

time step, as ∆t∗∗ or ∆t∗ can be various order of magnitude smaller than ∆tλ̃. This
can be avoided by means of a reconstruction of the approximate solution Û(x, t). The
strategy proposed here is based on enforcing positive values of h∗

i and h∗∗
i+1 when they

become negative. Considering that ẽ1
1 = 1, positive values of h∗

i require that

h∗
i = hn

i + α1
i+1/2 −

(
β

λ̃

)1

i+1/2

≥ 0 (95)

leading to the following limit over β1
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β1
i+1/2 ≥ β1

min β1
min = −

(
hn

i + α1
i+1/2

)
|λ̃1

i+1/2| (96)

Considering that ẽ2
1 = 1, positive values of h∗∗

i+1 require that

h∗∗
i+1 = hn

i+1 − α2
i+1/2 +

(
β

λ̃

)2

i+1/2

≥ 0 (97)

and a limit over β2 appears

β2
i+1/2 ≥ β2

min β2
min = −

(
hn

i+1 − (α)2
i+1/2

)
λ̃2

i+1/2 (98)

The reconstruction proposed in this work will be applied only to subcritical wet/wet
RP, as in dry/wet RP the appearance of negative values of h∗

i or h∗∗
i+1 in the approximate

solution is helpful to provide a correct tracking of the flooding advance, and in supercritical
cases the cell averaging of the weak solutions ensures positivity of the solution. Also cases
where both h∗

i < 0 and h∗∗
i+1 < 0 are omitted.

In the case h∗
i < 0 and h∗∗

i+1 > 0 and ∆t∗ < ∆tλ̃, the new value of β1 is redefined
ensuring that h∗∗

i+1 remains positive or null. To ensure conservation β2 must be replaced
by the new value of −β1, then

β1 =

{
β1

min if −β1
min ≥ β2

min

β1 otherwise
, β2 = −β1 (99)

In the case h∗
i > 0 and h∗∗

i+1 < 0 and ∆t∗∗ < ∆tλ̃, the new value of β2 is redefined
ensuring that h∗

i remains positive or null. To ensure conservation β1 must be replaced by
the new value of −β2, then

β2 =

{
β2

min if −β2
min ≥ β1

min

β2 otherwise
, β1 = −β2 (100)

3.4 Dam break test cases.

In this section we present comparisons among exact solutions of the Riemann problem
for system (1), neglecting friction, and numerical solutions. The exact solution corre-
sponding to a frictionless dambreak flow over a discontinuous bed is detailed in Appendix
C. The results are presented in the form of plots of the total depth, mean discharge,
Froude number and energy per unit weight or head. The examples are chosen to repre-
sent different combinations of wave patterns. The acceleration due to gravity is set equal
to g = 9.8m2/s. In all cases the bottom step is positioned at x = 0 and has a variable
height. In all cases ∆x = 1 and CFL = 1. When applying the reconstruction technique
of the weak solution proposed in (99) and (100) no difference in the solution has been
observed when comparing with the original solution.
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Figure 14: Test case 1: comparison between exact (—–) and numerical solutions at t=5s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−)
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Table 1: Summary of test cases.

Test Case hL hR uL uR zL zR

1 1.0 0.30179953 0.0 0.0 0.0 0.05
2 4.0 0.50537954 0.1 0.0 0.0 1.5
3 2.5 2.49977381 1.5 0.0 0.0 0.25
4 1.5 0.16664757 2.0 0.0 0.0 2.0
5 1.0 0.04112267 0.2 0.0 0.25 0.0
6 0.6 0.02599708 0.35 0.0 1.2 0.0
7 1.1 0.49457729 4.9 6.50 0.2 0.0
8 1.5 0.0 2.2862 0.0 0.0 4.0
9 1.5 0.0 4.5 0.0 0.0 4.0
10 1.5 0.0 -2.5 0.0 0.0 1.0
11 1.5 0.0 -5.0 0.0 0.0 1.0

Test case 1 is a dam-break type problem, with a combination of rarefaction and shock
waves. The initial condition consists of two columns of water of different height and zero
velocity. The solution, presented in Fig. 14 , contains a left moving rarefaction wave, a
stationary shock at the step and a right-moving shock wave. The presence of the step leads
to a reduction of the total water height running to the right as compared to the flat bottom
case. This reduction is due to the stationary shock, which dissipates part of the energy
of the shock wave. All three approximations of the pressure term, (pb/ρw)a,(pb/ρw)b and
(pb/ρw)c, provide results of similar accuracy, for the total depth, mean velocity, Froude
number and energy. The options (pb/ρw)b and (pb/ρw)c in particular overlap completely
so that they cannot be distinguished in the plot. The position of the fan expansion and
the shock are correct and the discharge does not present oscillations in the origin. The
correct behavior of the numerical scheme is explained attending to the characteristics of
the weak solution, that in a subcritical case, provides a constant value of discharge for
the two inner regions U∗

i and U∗∗
i+1, according to the exact solution.

Test case 2 is also a dam-break type problem, with a combination of rarefaction and
shock waves. The initial condition consists of two columns of water of different heights
and velocity on the left side. The solution, presented in Fig. 15, contains a left moving
rarefaction wave, a stationary shock at the step and a right-moving shock wave. The
numerical solution for approximation (pb/ρw)a differs strongly from the analytical solution
for all the plotted variables, and also provides an increment of the total water height.
Approximations of the pressure term, (pb/ρw)b and (pb/ρw)c, provide the same results,
leading to a correct description of the total depth, the mean discharge, Froude number
and compute the energy dissipation correctly.

Test case 3 is a two shock case with a convergent flow. The solution is presented
in Figure 16, and contains a left-moving shock, a stationary shock at the step and a
right-moving shock wave. As in the previous example, the step acts as an energy dis-
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Figure 15: Test case 2: comparison between exact (—–) and numerical solutions at t=5s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−)
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Figure 16: Test case 3: comparison between exact (—–) and numerical solutions at t=5s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−)
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Figure 17: Test case 4: comparison between exact (—–) and numerical solutions at t=5s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−)

sipation mechanism. All three approximations of the pressure term, (pb/ρw)a,(pb/ρw)b

and (pb/ρw)c, provide results of similar accuracy, for the total depth, mean discharge and
Froude number, as this case corresponds to a relatively mild slope. The strongest dif-
ferences appear in the total water height, with (pb/ρw)b and (pb/ρw)c providing the most
energy dissipative solutions.

Test case 4 is also a two shock case with a convergent flow, with an initial discontinuity
in the water depth. The performance of the numerical scheme in cases with this type of
discontinuity is of major importance in practice. As in test case 3, the solution, depicted in
Figure 17, contains a left-moving shock, a stationary shock at the step and a right-moving
shock wave. All solutions provide an adequate description of the water discharge at the
dam break position, x = 0m, but the differences among the results for the rest of variables
are noticeable. Approach (pb/ρw)a lead to unphysical result for the total water height,
while approach (pb/ρw)b, strongly overestimates the velocity of the right moving shock
and underestimates the velocity of the left moving shock. The hybrid option (pb/ρw)c

combines the best properties of both approaches leading to superior results, not only
providing an energy dissipating solution but also reaching better results for the rest of
variables. The differences with the exact solution are attributable to the linearization of
the source term when constructing the weak solution.
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Figure 18: Test case 5: comparison between exact (—–) and numerical solutions at t=5s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−)
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Figure 19: Test case 6: comparison between exact (—–) and numerical solutions at t=5s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−)

Test case 5 is a dam-break type problem, with a combination of rarefaction and shock
waves, but in contrast with test cases 1 and 2, the initial condition consists of two columns
of water of different heights, velocity in the left side and a backward step of height similar
to the right column of water. The solution, presented in Fig. 18, contains a left moving
rarefaction wave, a stationary shock at the step and a right-moving shock wave. The
presence of the step dissipates part of the energy. Approximations of the pressure term
(pb/ρw)b and (pb/ρw)c, that provide identical results, lead to a description of the total
depth, the mean discharge, Froude number and compute the energy dissipation closer to
the exact solution. Again, the differences still shown by approaches (pb/ρw)b and (pb/ρw)c

with respect to the exact solution are attributable to the linearization of the source term
when constructing the weak solution. Test case 6 is similar to test case 5, but with a
stronger discontinuity in the water elevation, and a very thin layer of water 0n the right
side. The solution is presented in Fig. 19. Only approximations of the pressure term
(pb/ρw)b and (pb/ρw)c, that provide identical results, lead to a correct description of the
total depth, the mean discharge, Froude number and compute the energy dissipation.
Approach (pb/ρw)a, provides a solution totally inadequate and distorted if compared with
the analytical case.

In test case 7 a supercritical motion from left to right is considered. The presence
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Figure 20: Test case 7: comparison between exact (—–) and numerical solutions at t=5s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−)
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Figure 21: Test case 8: comparison between exact (—–) and numerical solutions at t=5s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−), (pb/ρw)c,w(−−)

of the step introduces no limitation in the signal propagation upstream, and its effect
is in dissipating energy by the stationary shock at the step. The solution, presented
in Fig. 20, contains a stationary shock at the step, a right moving rarefaction wave,
and a right-moving shock wave. Only approximations of the pressure term (pb/ρw)b and
(pb/ρw)c, that provide identical results, lead to a correct description of the total depth, the
mean discharge, Froude number and compute the energy dissipation correctly. Approach
(pb/ρw)a, provides an unphysical solution for the total water height. For all approaches
the computed discharge is kept constant and equal to the left value, (hu)L, until the
solution reaches the rarefaction wave. This is explained attending to the definition of the
weak solution for supercritical cases in (??), that provides an adequate value for the inner
region, resulting in (hu)n

i = (hu)∗i+1 according to the exact solution.
In test cases 8 to 11 the performance of the numerical scheme in RPs characterized by

a fixed in time wet/dry position are analysed. Depending on the approach of the source
term the flow develops in both regions of the plain. This is avoided if the weak solution
provides null or negative values of water depth in the initially dry side of the RP. In this
context, the performance of the energy dissipative approach (pb/ρw)c,w is of interest.

In test case 8 a subcritical flow encounters a wall and is reflected. The solution,
presented in Fig. 21, contains a left-moving shock that links the right moving water with
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Figure 22: Test case 9: comparison between exact (—–) and numerical solutions at t=5s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−), (pb/ρw)c,w(−−)

a region of still water ending at the stationary shock at x = 0. The bed elevation on the
right side is greater than the maximum allowable water depth in the wet region at rest.
Only approximations of the pressure term (pb/ρw)a, (pb/ρw)c and (pb/ρw)c,w provide a
correct solution in the left side, while (pb/ρw)b, develops in both sides leading to incorrect
solutions. Option (pb/ρw)c,w provides more accurate results for both water depth and flow
discharge. The same results are observed for test case 9, Fig. 22, where a supercritical
flow encounters a wall and is reflected.

In test case 10 a subcritical flow moving to the left generates a left moving rarefaction
connecting the left state with a state of water at rest, with a water depth smaller than
the depth of the wall defined in the other side. The solution is presented in Fig.23.
Approximations of the pressure term (pb/ρw)a and (pb/ρw)c develop correctly in the left
side of the (x, t) plane, although present an oscillatory behavior in the zero velocity
region. The results for approach (pb/ρw)c,w do not present any oscillation in the region
of zero velocity but estimate less accurately the velocities at the tail and the head of the
rarefaction. Again (pb/ρw)b provides an incorrect solution.

The situation is much more interesting in test case 11, where supercritical flow con-
ditions are enforced in the left side. Again (pb/ρw)b provides an incorrect solution and
(pb/ρw)a, (pb/ρw)c lead to similar results. Results given by approach (pb/ρw)c,w follow the
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Figure 23: Test case 10: comparison between exact (—–) and numerical solutions at t=5s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−), (pb/ρw)c,w(−−)

same tendency as in test case 10.
According to the hypothesis assumed to derive the exact solution, the solutions in test

cases 8 to 11 should be independent of the actual height of the dry step zR. That is, if the
value of the dry bed level zR decreases until a value equal to the water depth in the region
of zero velocity, that will be referred to as hL,0, the solution remains equal. However,
due to the approximation used to define the bed discontinuity, this has an influence,
and before zR reaches the limit hL,0, numerical solutions evolve in both regions. Table
2 shows the numerical limits that can be reached by the value of zR before the solution
is altered. For test cases 8 and 9, among the approaches described, (pb/ρw)c,w provides
the most accurate limiting value, denoted zc,w

R , while approaches (pb/ρw)a and (pb/ρw)c

require larger values to ensure a correct solution. If (pb/ρw)b is used, the solution fails for
all values of zb

R. For test case 10 in Table 2 shows that (pb/ρw)c,w leads to the best results
when decreasing the value for zR and that (pb/ρw)b fails in all cases. It is noticeable that,
in case 11, approaches (pb/ρw)a, (pb/ρw)c and (pb/ρw)c,w lead to similar limits for zR.
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Figure 24: Test case 11: comparison between exact (—–) and numerical solutions at t=25s obtained with
approaches (pb/ρw)a(− ◦ −), (pb/ρw)b(− • −), (pb/ρw)c(−△−), (pb/ρw)c,w(−−)
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Table 2: Numerical limits for zR.

Test Case hL,0 za
R zb

R zc
R zc,w

R

8 2.50000452 3.2 — 3.2 2.51
9 3.60001180 4.7 — 4.7 3.61
10 0.68136277 0.8 — 0.8 0.68
11 0.18160310 0.18 — 0.18 0.18

4 CONCLUSIONS

In this paper new approximate Riemann solvers problems for systems with source
terms have been presented by adding one extra wave associated to the source term. The
approximate solution is assumed discontinuous in x = 0 and therefore the flux cannot be
correctly evaluated assuming the existence of a single value at that location. The method
is specifically designed to satisfy the integral formulation.

These wave solutions have been used to rebuild Roe’s solver for the discretization of
equations with source terms interpreted as non-conservative equations. The approach is
based on the wave propagation algorithm in which waves arising in Riemann solutions are
directly re-averaged onto adjacent cells in order to update the numerical solution. The
method is applicable to both equations in the form of a conservation law as well as those
where there is not a flux function (non-conservative equations). The careful procedure of
wave averaging in the adjacent cells is the only way to control the stability region of the
resulting method as well as the positivity of the variables in all kind of flow conditions.
This is the starting point to explore different approximations to the integral source terms
in the search for the best properties in each case.

The discretisation proposed is different from the work of many previous authors, who
approximated their source terms in a manner which took into account the flux discretisa-
tion and, as a consequence, allowed the numerical model to maintain specific equilibria.
Previous work dealing with the shallow water system has devoted particular attention
to the special case of still water, and the schemes have been constructed so that they
maintain this state. In this work, the emphasis is put on a more general idea that is
based in the knowledge of non-trivial exact solutions. In fact, the improved accuracy of
the new upwind discretisation of the source terms is shown in the approximation of other
unsteady exact solutions, particularly in one dimension. Three approaches are discussed
for the integral source term, all of them able to fit the trivial quiescent water steady state
but different in other cases.

Different methods of integrating source terms, which all respect the classical C-property
for water at rest, have been shown to provide different behaviour in specifiec configurations
when the water velocity is not equal to zero. Only one of them is recommended as it
represents the best compromise in all kind of flows.

The work proposes two modifications over the original Roe’s scheme: First, a reformu-
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lation of the stability condition that generalizes the classical CFL condition by including
the influence of the source terms and the initial conditions in order to avoid the appear-
ance of negative water depth values. Second, a redefinition of the numerical scheme in
some particular cases in order to further prevent negative water depth values with inde-
pendence of the time step. These modifications lead certainly to a considerable CPU time
increase in complicated cases. It must be stressed, however, that the modifications are
proposed precisely to make the basic method able to cope with complicated cases.

The careful design of the numerical scheme for the equations with source terms requires
severe restriction of the allowable time step compatible with numerical stability and posi-
tivity in some cases. It is possible to avoid this by limiting the amount of numerical source
term involved instead of limiting the time step and leading to more efficient computations.
This part does not increase the CPU time but, on the contrary, is included to reduce it.
It has been shown that, in combination with the source term approximation, the method
produces accurate solutions for a wide variety of time-dependent test cases.
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[13] J. Murillo, P. Garćıa-Navarro and J. Burguete. Conservative Numerical
Simulation of Multicomponent Transport in Two-Dimensional Unsteady Shallow Wa-
ter Flo, Journal of Computational Physics, 228, 5539–5573,2009

[14] J. Murillo and P. Garcia-Navarro. Weak solutions for partial differential equa-
tions with source terms: Application to the shallow water equations, Journal of

Computational Physics, 229, 4327–4368, 2010.

[15] P.L. Roe. A basis for Upwind Differencing of the Two-Dimensional Unsteady Euler

Equations. Numerical Methods in Fluid Dynamics, Vol II. Oxford University Press,
Oxford, 1986.

[16] B.D. Rogers, A.G.L. Borthwick, P.H. Taylor. Mathematical balancing of
flux gradient and source terms prior to using Roes approximate Riemann solver.
Journal of Computational Physics 168, 422–451, 2003.

[17] G. Rosatti, J. Murillo, L. Fraccarollo. Generalized Roe schemes for 1D
two-phase, free-surface flows over a mobile bed. Journal of Computational Physics

54, 543–590, 2007.

[18] W.C. Thacker. Some exact solutions to the non linear shallow water equations.
Journal of Fluid Mechanics 107, 499-508, 1981.

39



P. Garcia-Navarro and J. Murillo

[19] E.F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer,
Berlin, 1997, p. 526, 1997.

[20] E.F. Toro. Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley, New
York, 2001, p. 109, 2001.

[21] M.E. Vázquez-Cendón. Improved treatment of source terms in upwind schemes
for the shallow water equations in channels with irregular geometry. Journal of Com-

putational Physics 148, 497–498, 1999.

[22] J.G. Zhou, D.M. Causon, C.G. Mingham, D.M. Ingram . The Surface Gra-
dient Method for the Treatment of Source Terms in the Shallow-Water Equations.
Journal of Computational Physics 168, 1–25, 2001.

40


