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Summary. A control volume mixed finite element scheme for a triangular discretization
of a 2-D domain is presented; several control-volume scenarios for use with the scheme
are explored.

1 INTRODUCTION

In this paper, a mixed variational approach in conjunction with the Control Volume
Mixed Finite Element (CVMFE) method is used to derive flux and pressure equations over
a domain descritized with triangular elements. In the CVMFE method, it is customary
to construct a control volume Q̄ which straddles the common edge or face between two
adjoining elements Ti and Tj. The control volume Q̄ is constructed such that Q̄ = Qi∪Qj

where Qi ⊂ Ti and Qj ⊂ Tj and Qi and Qj join at the common face (see Figure 1a). The
objective is to construct, by integrating over an appropriate control volume, a discrete
form of the Darcy relation which defines the relation between the discrete pressures and
fluxes. Comparisons are made with the Standard Mixed Finite Element (SMFE) method
for triangular elements1 using results from modelling a rough-coefficient scenario. The
CVMFE derivation presented herein uses reference space in preference to real space; the
equivalency of the two spaces is frequently noted in the mixed finite element literature2,3.

2 BASIC EQUATIONS

Mass conservation for 2-D steady flow in a permeable medium can be written

∇ · q = W (x, y), (x, y) ∈ Ω (1)

where q is the specific discharge vector and W is a source term. Boundary conditions on
the surface ∂Ω are fluxes over ∂Ωf and/or specified pressures over ∂Ωp; otherwise ∂Ω is
considered an impermeable boundary. The Darcy relation is assumed to link the pressure
p to the specific discharge q:

q = −K∇p (2)
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where K(x, y) = κ(x, y)/γ, κ(x, y) is the hydraulic conductivity tensor, and γ is the
specifc weight of water (taken constant); K has units L4T−1F−1. In the CVMFE method
the inverse of K(x, y) is used, so the operational equation becomes

∇p = −K−1 q. (3)

The domain Ω is assumed discretized with a mesh of trangular elements referenced
by Cartesian coordinates r = (x, y). Each element Ti is the image under a bilinear
mapping of an equilateral triangle T̂i in which the sides all have unit length (Figure 1b).
The reference triangle T̂i is positioned with regard to local coordinates ρ = (η, ξ) and is
defined by vertices ρ1 = (0,

√
3/2), ρ2 = (1/2, 0) and ρ3 = (−1/2, 0). The mesh element

Ti is defined by the location of its vertices at r1 = (x1, y1), r2 = (x2, y2) and r3 = (x3, y3);
these vertices map into the correspondingly numbered reference vertices ρ1, ρ2 and ρ3. A

Figure 1: a. triangular element Ti from discretization with vertex locations r1, r2 and r3. Hatched area
denotes control volume Qi. b. equilateral reference triangle T̂i with edges of unit length. Hatched area
denotes reference control volume Q̂i.

mapping that associates with any reference location ρ = (η, ξ) in T̂ with a point r = (x, y)
in T is:

r = vi + Ψiη + Σiξ (4)

where vi = (r2 + r3)/2, Ψi = E23, Σi =
√

3(E12 + E13)/3, and where Eij = ri − rj are
edge vectors.

3 SHAPE FUNCTION AND SPECIFIC DISCHARGE

The vector shape functions are used to approximate the specific discharge q within
any given triangular element Ti using the bulk fluxes fk crossing faces Fk (Figure 2a).

2



Richard L Naff

Allowing q̂ to be an approximation of q over element Ti, then q̂ takes the form

q̂ = f1νi1 + f2νi2 + f3νi3 (5)

where νik represents the vector shape function for face Fk. With regard to reference space

a. Face designation. b. Pressure support.

Figure 2: a. Reference triangle T̂i showing arrangement of faces Fk. b. Reference triangle T̂i showing
linear pressure support (dashed triangle).

T̂i, the vector shape functions can be written as follows:

νi1 =
2
√

3

3

ςi1
Ji

[
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3

2
− ξ

)
−Ψiη

]
(6a)
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3

3
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Ji
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(
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(6b)
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3

3

ςi3
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[
Ψi

(
1

2
+ η

)
+ Σiξ

]
(6c)

where Ji = 4
√

3Ai/3 is the Jacobian for mapping (4), Ai is the area of triangular element
Ti and ςi1 is a sign element which is positive for an inward flux scenario and negative for
an outward flux scenario.

A discrete flux divergence relation is developed for an arbitrary triangle Ti by applying
Gauss’s divergence theorm to (1). Assuming that q in (1) can be replaced with q̂ of (5),
then integrating ∇ · q over Ti gives the result∫

Ti

∇ · q dv =
∫
∂Ti

q · n ds ≈
∫
∂T̂i

q̂ · n dŝ = − [ςi1f1 + ςi2f2 + ςi3f3] (7)
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where n is the outward unit normal as defined on faces Fk of Ti. Thus, a form for the
discrete flux divergence is

ςi1f1 + ςi2f2 + ςi3f3 = −
∫
Ti

W (x, y) dv. (8)

4 TEST FUNCTION AND PRESSURE GRADIENT

In this section, the application of the vector test function to the pressure gradient (3)
within an arbitrarily triangular element i is examined. In contrast to the application of
CVMFE for quadrilateral elements2, it is not obvious that the control-volume boundary
should pass through the element centroid; rather, the possibility exists that this boundary
could be located at any point along the ξ axis such that ξ = s

√
3/2, where 0 < s ≤ 1

(Figure 1b). Control-volume boundaries corresponding to the centroid location (s = 1/3),
the half distance between the base and vertex of the triangular element (s = 1/2), and
the full element (s = 1) are investigated. In addition to these somewhat logical locations,
a location at s = 1/4 will be included to test the effect of using a smaller control volume.

The vector test function ωi for the CVMFE method is taken directly from the covariant
vector Σi = ∂r/∂ξ in (4), and is defined as3,4

ωi =
υ(s)Σi

Ji
,

1

υ(s)
= 2
√

3
∫ s
√

3/2

0

∫ −√3
3
ξ+ 1

2

√
3

3
ξ− 1

2

dη dξ (9)

where Ji is the the Jacobian defined in (6), and υ(s) is the control volume coverage factor.
A linear pressure support for p within Ti is assumed (Figure 2b):

p = (1− 4
√

3

3
ξ)p1 +

2
√

3

3
(ξ −

√
3η)p2 +

2
√

3

3
(ξ +

√
3η)p3 (10)

where p1, p2, p3 are the edge pressures for Ti. The derivative of p with respect to the ξ
coordinate is simply

∂p

∂ξ
= 2
√

3(pi − pi1), pi = p|η=0,ξ=
√

3/6 = (p1 + p2 + p3)/3 (11)

where pi1 = p1 is the edge pressure on F1 for T̂i, as illustrated in Figure 2b.
With regard to the left-hand side of (3), the dot product of the pressure gradient ∇p

and the test function (9) is integrated over the control volume for triangular element Ti.
Noting that covariant vectors Σi and Ψi in Ti become unit vectors in T̂i and therefore
that ∇p ·Σi = ∂p/∂ξ, then a discrete pressure gradient is obtained:

∫
Qi

∇p · ωi dv =
∫ s
√

3/2

0

∫ −√3
3
ξ+ 1

2

√
3

3
ξ− 1

2

∇p · ωiJi dη dξ (12)

= υ(s)
∫ s
√

3/2

0

∫ −√3
3
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2

√
3

3
ξ− 1

2

∂p

∂ξ
dη dξ = pi − pi1.
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5 DISCRETE DARCY RELATION

The discrete Darcy relation is established by first integrating (3) over Q̂i with respect
to the test function (9), and then joining that result to an equivalent integration over Q̂j

associated with the adjoining Tj. Replacing q with q̂ on the right-hand side of (3), then

−
∫
Qi

ωi ·K−1
i q dv ≈ −

3∑
k=1

fk

∫
Q̂i(s)

ωi ·K−1
i νik dv̂ = −

3∑
k=1

ςikaik fk. (13)

For the purposes of this study, it is assumed that K−1
i is a tensor constant with respect

to Ti. After evaluation, the coefficients aik in (13) become:

ai1(s) = α(s)
[
Σi ·K−1

i Σi

]
/Ai (14a)

ai2(s) = β(s)
[
φ(s) Σi ·K−1

i Ψi −Σi ·K−1
i Σi

]
/Ai (14b)

ai3(s) = −β(s)
[
Σi ·K−1

i Σi + φ(s) Σi ·K−1
i Ψi

]
/Ai (14c)

where α(s), β(s) and φ(s) are parameters dependent on the coverage s of the element,
and Ai is the element area as noted in (6). Equating (12) and (13), the local discrete
Darcy relation for the triangular element Ti can be written

pi − pi1 = −
3∑

k=1

ςikaik fik (15)

where pi1 is the edge pressure given in (11), fik is the bulk flux across Fk in Ti. For a
triangular element Tj adjoining element Ti at face F1 (see Figures 1 and 2a), the local
discrete Darcy relation can similarly be written

pj − pj1 = −
3∑

k=1

ςjkajk fjk (16)

where coefficents ajk are idential in form to aik of (14) with the j index replacing the i.
That flux continuity be maintained between Ti and Tj requires ςi1 = −ςj1 and pi1 = pj1;
replacing ςj1 in (16) with −ςi1 and adding (16) and (15) eliminates the edge pressures
from the discrete Darcy relation:

pi − pj = −[ςi1(ai1 + aj1)fi1 + ςi2ai2 fi2 + ςi3ai3 fi3 − ςj2aj2 fj2 − ςj3aj3 fj3]. (17)

The coefficients α, β and φ, found in (14) have the following values: for s = 1/4: α =
37/336, β = 5/336, and φ = 14

√
3/5; for s = 1/3: α = 19/180, β = 7/360, and

φ = 15
√

3/7; for s = 1/2: α = 7/72, β = 1/36, and φ = 3
√

3/2; and for s = 1: α = 1/12,
β = 1/24, and φ =

√
3.
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Figure 3: Mesh for irregular grid, consisting of 48 triangular elements in which vertex locations have been
randomly perturbed. Values for K(x, y), in units consistant with (2), are given at right.

6 RESULTS AND DISCUSSION

Discrete equations (8) and (17) can be assembled into the following matrix equation:[
M NT

N 0

] [
f
p

]
=

[
rf
rp

]
(18)

where M = {aik}, N = {ςik}, rf = {pbl} − {ailf bl }, and rp = −{ςilf bl } − {
∫
Ti
W (x, y) dv},

and where f bl and pbl represent specified flux and pressure conditions, respectively. These
equations are solved by the Schur complement method1; while this method isn’t particu-
larly efficient, it is relatively easily implemented.

If the hydraulic conductivity field is homogeneous, experience thus far indicates that
using either the SMFE method or one of the CVMFE methods to construct the coeffi-
cients in M has little effect on the resulting solution of a given problem. Therefore, a
simulation with rough coefficients was devised to compare SMFE and CVMFE methods
and also to compare the CVMFE method at various levels of coverage, s. Simulations
were run using the irregular mesh and the rather large hydraulic conductivity contrast
depicted in Figure 3. The mesh was refined by subdividing each triangular element into
four triangles by connecting the midpoints of each element edge. Three additional re-
finements were performed for a maximum of 3072 elements. A uniform inward flux was
imposed on the left-hand side of the domain, and an equivalent outward flux was imposed
on the right-hand side; the flux rate was 0.5 L/T units consistant with κ of (2). Sim-
ulations were performed using coefficients for SMFE and for CVMFE with coverages of
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MFE grid refinement
type 1× 4× 16× 64×

CVMFE:
s = 1

2
, 1

3
, 1

4
& SMFE

4.282× 10−02 2.467× 10−02 1.588× 10−02 7.588× 10−03

CVMFE:
s = 1 4.282× 10−02 2.467× 10−02 1.589× 10−02 3.047

Table 1: Approximate Flux L2 norm ‖f‖2 for rough-coefficient simulations as function of simulation type
and grid refinement. Refinement 1×: 48 elements. Subsequent refinements contain four times as many
elements as the previous refinement.

s = 1/4, 1/3, 1/2, and 1. Flux accuracy was measured using the L2 norm, defined herein
as

‖f‖2 =

{∑
i

Q̄i

[
(f̃i − fi)/Li

]2/∑
i

Q̄i

}1/2

,

where, for all faces Fi ∈ Ω, f̃i and fi are the estimated and “true” fluxes, respectively, Li is
the length of face Fi, and Q̄i is a control volume straddling Fi (the choice of s is immaterial
in this case). Estimates of the “true” fluxes fi were obtained from a SMFE solution using a
fourth-level grid refinement consisting of 12,288 elements. The SMFE method was chosen
for this purpose after a comparison of flux results from the third-level grid refinement level
(3072 elements) revealed that the CVMFE method with s = 1 produced fluxes dissimilar
to fluxes obtained from the SMFE method and CVMFE method with s = 1/4, 1/3, 1/2,
while the SMFE method and CVMFE method with s = 1/4, 1/3, 1/2 all produced fluxes
that were quite similar. Table 1 is a compilation of ‖f‖2 results for the various solution
methods and grid refinements. Notable here are the CVMFE method results with s = 1;
the abrupt increase in ‖f‖2 with increased grid refinement is rather dramatic, indicating
that CVMFE with s = 1 is an inferior approximation. Otherwise, the solution quality
improves at best linearly with each mesh refinement.

Upon consideration of the L2 norm results, a decision was made to investigate the
condition number κ of the matrix M in (18) for the various methods and grid refinements.
The condition number used herein is defined5 as κ = ‖M‖∞‖M−1‖∞, where, for any
matrix A, ‖A‖∞ = max1≤i≤n

∑n
j=1 |aij|. Condition number results are contained in Table

2; the second column in this table, labelled κsmfe, contains the actual condition numbers
for the SMFE method, and columns three through six contain the condition numbers for
the CVMFE method, for various coverages s, expressed as the ratio κcvmfe/κsmfe. Most
notable here are the rather large condition numbers associated with the CVMFE method
when s = 1; the degradation with increased grid refinement is most pronounced, but even
for 1× refinement, κcvmfe is nearly three times larger than κsmfe. This result suggests
that using the entire element as the basis for the control volume in the CVMFE method
is not appropriate. The condition numbers for the other coverages were not as large as
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grid κcvmfe/κsmfe
refine- κsmfe as function of coverage s

ment 1/4 1/3 1/2 1

1× 261.6 1.11 1.14 1.27 2.80

4× 1156 1.08 1.10 1.25 3.98

16× 2463 1.09 1.11 1.27 6.92

64× 5073 1.08 1.11 1.27 12.9

Table 2: Condition number for matrix M . κsmfe: condition number for SMFE matrix. κcvmfe: condition
number for CVMFE matrix. Refinement 1×: 48 elements. Subsequent refinements contain four times as
many elements as the previous refinement.

those for s = 1 and maintain a near-constant ratio with κsmfe even as grid refinement
increases matrix size. For s = 1/4 and 1/3, the condition numbers are about 10% larger
than κsmfe. While the condition numbers for the CVMFE method do decrease with
decreasing s, the slight amount of change between s = 1/4 and s = 1/3 suggests that
little would be gained by further decreasing the coverage s.

7 CONCLUSIONS

For the rough-coefficient test herein, the CVMFE method performed best if coverage
s is limited to smaller values (s = 1/4, s = 1/3). The CVMFE method does have a slight
disadvantage to the SMFE method with regard to the condition number of matrix M .
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