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Summary. We study a representative mathematical model of groundwater flow where
a dynamic position of the water table is a part of unknown solution. To compute the
problem on a fixed (enlarged) domain we describe the groundwater table using a level set
formulation. A novel discretization method is proposed to solve the problem on a fixed
grid. Numerical results confirm the applicability of the method for this type of problems.

1 INTRODUCTION

Level set methods are very popular mathematical tool for the solution of problems
with moving boundaries and interfaces [9, 8, 4, 5], especially for the numerical solution
of two-phase flows [3]. The idea is to describe the free boundary implicitly as a zero set
of some level set function. The advantage of such formulation is a possibility to use fixed
computational grids without moving grid points.

In this work we propose a level set method for the numerical simulation of groundwater
flow with a free water table. In section 1 we introduce the representative mathematical
model. In section 2 we propose the numerical method and in section 3 we present numer-
ical experiments.

2 MATHEMATICAL MODEL

Let D ⊂ R2 be a unit square. Let Γ(t) ⊂ D be a curve that describes in time t ≥ 0 the
dynamic position of groundwater table and Ω(t) ⊂ D be the subdomain “bellow” Γ(t).
Finally, Ωout(t) := D \ Ω(t).

The groundwater flow is considered only in Ω(t), t ≥ 0 and is characterized by an
unknown pressure p = p(x, z, t) that obeys the partial differential equation

∇ · ~q = 0 , ~q = −K∇ (p+ ρgz) . (1)
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All parameters in (1) are constant. The dependence of p on t is only due to the dynamic
position of Γ(t).

Furthermore, we suppose that ∂Ω(t) = Γ(t) ∪ ΓD ∪ ΓN and

p(x, z, t) = 0 , (x, z) ∈ Γ(t) , (2)

p(x, z, t) = pD(x, z) , (x, z) ∈ ΓD , (3)

~n(x, z) · ∇p(x, z, t) = pN(x, z) , (x, z) ∈ ΓN , (4)

where ~n is the normal vector with respect to ΓN .
Finally, we suppose that the movement of Γ(t) is prescribed by the speed f̄ = f̄(x, z, t),

(x, z) ∈ Γ(t) that is defined in normal direction ~N = ~N(x, z, t) with respect to Γ(t)
(pointing from Ω(t) to outside) and that is equal to

f̄ =
1

θ
~N · (~q − A~ez) . (5)

Following [1], θ is a given effective porosity and A = A(x, z, t), (x, z) ∈ Γ(t) is a given
velocity of accretion.

The system (1) - (5) constitutes our mathematical model to introduce a representative
example of groundwater flow with dynamic water table.

Next we continue to describe the dynamic position Γ(t) of groundwater table using a
level set formulation. Let the initial position Γ(0) be given implicitly as the zero level set
of some function ϕ0 = ϕ0(x, z), i.e., Γ(0) = {(x, z) ∈ D , ϕ0(x, z) = 0}. Moreover, let
Ω(0) be given by Ω(0) = {(x, z) ∈ D , ϕ0(x, z) < 0}.

An important (nontrivial) step of level set formulation is to find a (smooth) velocity

function ~V = ~V (x, z, t) such that ~V = f̄ ~N for (x, z) ∈ Γ(t), see later. Once ~V is given,
we can search for the solution ϕ = ϕ(x, z, t), (x, z) ∈ D, t > 0 of advection equation

∂tϕ+ ~V · ∇ϕ = 0 , ϕ(x, z, 0) = ϕ0(x, z) , (6)

that describes implicitly the time dependant position of the interface, i.e., Γ(t) = {(x, z) ∈
D , ϕ(x, z, t) = 0} and Ω(t) = {(x, z) ∈ D , ϕ(x, z, t) < 0}. Some standard, e.g., Dirichlet
or outflow boundary conditions, can be considered with (6).

Before introducing our choice of ~V in (6), we need to define for a fixed t the so called
signed distance function φ(x, z, t) for the interface Γ(t) that is a (weak) solution of the so
called eikonal equation [9, 8],

|∇φ(x, z, t)| = 1 , (x, z) ∈ D , φ(x, z, t) = 0 , (x, z) ∈ Γ(t) . (7)

To find φ, we search for the stationary solution Φ = Φ(x, z, s) of two equations

∂sΦ(x, z, s) + |∇Φ(x, z, s)| = 1 , (x, z) ∈ Ωout(t) , s > 0 , (8)

∂sΦ(x, z, s)− |∇Φ(x, z, s)| = −1 , (x, z) ∈ Ω(t) , s > 0 . (9)
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The initial condition for (8) - (9) are given by Φ(x, z, 0) = φ(x, z, t), (x, z) ∈ D, and the
boundary conditions for (x, z) ∈ Γ(t), s > 0 by Φ(x, z, s) = 0. The treatment of boundary
conditions on ∂D can be found, e.g., in [6].

Let the stationary solution of (8) - (9) be reached for some finite time S > 0, then
φ(x, z, t) := Φ(x, z, S). Note that Γ(t) is the zero level set of φ(x, z, t) and Φ(x, z, s).

Having φ(x, z, t) for a fixed t, we search for f = f(x, z, t) such that f(x, z, t) = f̄(x, z, t),
(x, z) ∈ Γ(t), and

∇φ · ∇f = 0 . (10)

To find more easily the function f for a fixed t, we can again search for the stationary
solution F = F (x, z, s) of following advection equations

∂sF +∇φ · ∇F = 0 , (11)

that are solved for s > 0 independently in two subdomains Ω(t) and Ωout(t). The boundary
condition on Γ(t) = ∂Ω(t) ∩ ∂Ωout(t) is given by F (x, z, s) = f̄(x, z, t). Again, such
stationary solution is obtained at some finite time S > 0 and f(x, z, t) = F (x, z, S).

Once the function f is found, the velocity ~V used in (6) is defined by ~V = f∇φ.

3 DISCRETIZATION METHOD

We describe our discretization method using standard notation of finite differences. To
do so, let us discretize D by a grid made of points (xi, zj), 0 ≤ i, j ≤ I, where I is given
and h := xi+1 − xi = zj+1 − zj.

Let ϕ0
ij := ϕ0(xi, zj). The values ϕn

ij will approximate ϕ(xi, zj, t
n) for some discrete

time points 0 = t0 < t1 < . . . < tn < . . . and will be determined in our algorithm.
To find a polygonal approximation Γn

h of the interface Γ(tn), we will assume a linear
interpolation between ϕn

ij and its (at most four) neighbouring values.
Throughout this paper we say that (k, l) ∈ Λn

ij, if ϕn
ij < 0, and (k, l) is the index of one

of existing neighbours ϕn
i±1j or ϕn

ij±1, and, moreover, ϕn
ijϕ

n
kl < 0. Clearly, if (k, l) ∈ Λn

ij,
there exists a zero point of the linear interpolation on the edge between (xi, zj) and (xk, zl).
To determine such point, one can find ᾱ ∈ (0, 1) such that

0 = ᾱϕn
ij + (1− ᾱ)ϕn

kl ⇒ ᾱ =
ϕn
kl

ϕn
kl − ϕn

ij

, (12)

and the zero point (x̄, z̄) of linear interpolation between ϕn
ij and ϕn

kl is given by

(x̄, z̄) =
ϕn
kl

ϕn
kl − ϕn

ij

(xi, zj) +
ϕn
ij

ϕn
ij − ϕn

kl

(xk, zl) . (13)

Therefore, Γn
h can be represented by a polygonal that connects all such zero points.

Analogously, we can define Ωn
h ≈ Ω(tn). Due to our assumptions we have that (xi, zj) ∈ Ωn

h

if ϕn
ij < 0. If ϕ0

ij = 0, one has (xi, zj) ∈ Γn
h, but in general Γn

h does not cross the grid
points.
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3.1 NUMERICAL SOLUTION OF GROUNDWATER FLOW

Let the values ϕn
ij be know. We discretize (1) by standard finite differences

4pnij − p̂ni+1j − p̂ni−1j − p̂nij+1 − pnij−1 = 0 . (14)

The discrete equations (14) are constructed only for grid points (xi, zj) ∈ Ωn
h ∪ ΓN . For

the values p̂nkl in (14) with corresponding indices one has p̂nkl = pnkl if (k, l) 6∈ Λn
ij. Standard

treatment of Neumann and Dirichlet boundary conditions shall be used, including the
case pnkl = 0 if ϕn

kl = 0.
To define p̂nkl, (k, l) ∈ Λn

ij, we extrapolate linearly the non-existing discrete value of p
in the grid point (xk, zl) using (12) and (13). By exploiting that p(x̄, z̄) = 0, we obtain

p̂nkl =
ϕn
kl

ϕn
ij

pnij , (k, l) ∈ Λn
ij . (15)

A caution is necessary for very small values of ϕn
ij, see [7].

To determine the values pnij ≈ p(xi, zj, t
n) for the grid nodes (xi, zj) ∈ Ωn

h∪ΓN , one has
to solve a linear system of algebraic equations. When done, the values ~qnij ≈ ~q(xi, zj, t

n)
can be computed for (xi, zj) ∈ Ωn

h by

~qnij =
1

2h

(
p̂ni+1j − p̂ni−1j , p̂

n
ij+1 − pnij−1

)
. (16)

To proceed with (14) from n to n+ 1, we need to compute the values ϕn+1
ij using some

approximation of advection equation (6). In next section we describe how to obtain the

discrete values ~V n
ij ≈ ~V (xi, zj, t

n). Once such values are available, we use the standard

first order accurate upwind method (explicit in time, see, e.g., [4]) to compute ϕn+1
ij .

3.2 NUMERICAL SOLUTION OF EIKONAL EQUATION

Let the index n be fixed. To discretize (8) and (9), we follow [2] and introduce a
numerical scheme valid for 0 ≤ i, j ≤ I and m = 0, 1, . . .

Φm+1
ij = Φm

ij ±∆sm
(

1− 1

h

√
(∆xΦm

ij )2 + (∆zΦm
ij )2

)
, (17)

where a particular sign of ± has to be chosen analogously to (8) or (9). Furthermore,

∆xΦm
ij = max{|Mi+1 j|, |Mi−1 j|} , ∆zΦ

m
ij = max{|Mi j+1|, |Mi j−1|} , (18)

and

Mk l =

 min{Φ̂m
k l − Φm

ij , 0}, ϕn
ij > 0 ,

max{Φ̂m
k l − Φm

ij , 0}, ϕn
ij < 0 .

(19)
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The definition (18) is valid without changes if 0 < i, j < I, otherwise the values of M
with the indices of non-existent grid points are simply skipped in (18).

Analogously to previous section, one chooses in (19) that Φ̂m
kl = Φm

kl if ϕn
ijϕ

n
kl ≥ 0 and

Φ̂m
kl =

ϕn
kl

ϕn
ij

Φm
ij if ϕn

ijϕ
n
kl < 0, see also the related discussion in section 3.1.

The time step in (17) is chosen typically to be ∆sm = h/2 that insures a stability in
the case of uniform grids [2]. Unfortunately, this stability can be disturbed for the grid
points (xi, zj) near Γn

h.
For such grid points we slightly modify the scheme (17) to allow larger time steps. We

are inspired by similar approach used in [4] and by exploiting a close relation between the
signed distance function and the so called first arrival time function [9, 6].

By simplifying the topic and without going into much details, one can consider for the
grid points (xi, zj) near to Γn

h the following numerical scheme

Φ̃m+1
ij = Φm

ij ∓∆sm
1

h

√
(∆xΦm

ij )2 + (∆zΦm
ij )2 , (20)

that can be seen as analogous to (17) if applied to equation ∂sΦ = ∓|∇Φ|. Using (20),
one can define a special time step ∆critsmij such that Φ̃m+1

ij = 0 if ∆sm = ∆critsmij in (20),
i.e.,

∆critsmij =
|Φm

ij |h√
(∆xΦm

ij )2 + (∆zΦm
ij )2

(21)

that can be viewed as an approximation of the first arrival time function at (xi, zj).
Applying these ideas in the context of (17), we replace (17) for the grid points (xi, zj)

near Γn
h by the scheme

Φm+1
ij = Φm

ij ±∆smij

(
1− 1

h

√
(∆xΦm

ij )2 + (∆zΦm
ij )2

)
, (22)

where ∆smij = min{∆sm,∆critsmij}. In such a way, the modified scheme (22) has no stability
restriction on the choice of ∆sm.

In theory, one has to apply (17) with so many time steps m, until a steady state is
reached. In practice, only some fixed number of time steps might be used, say m = M .
Once finished, φn

ij = ΦM
ij .

It is important to note that although ϕ and φ has an identical zero level set, this is not
necessary the case for their approximations. Therefore, the approximation of ϕ is used
only to represent implicitly Γn

h and Ωn
h, see section 3, and the approximation of φ is used

to approximate ∇φ, see the following section.

3.3 NUMERICAL SOLUTION OF VELOCITY EXTRAPOLATION

To approximate f̄ in (5), for (xi, zj) ∈ Ωn
h such that Λn

ij 6= ∅ we define

f̄n
ij :=

1

θij

∇φn
ij

|∇φn
ij|
·
(
~qnij − An

ij~ez
)

(23)
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where

∇φn
ij =

(
φn
i+1j − φn

i−1j

2h
,
φn
ij+1 − φn

ij−1

2h

)
. (24)

To compute the approximative values Fm
ij for the solution F of advection equation (11),

we apply again the standard upwind method.
In the exact case of (11), F is known and fixed on Γ(t). In our numerical approximation,

we use a simple approximation by fixing the values of Fm
ij = f̄n

ij for (xi, zj) ∈ Ωn
h such that

Λn
ij 6= ∅. We are aware of the fact that such an approximation is rather rough, see our

numerical experiments, and in future we plan to improve this part of the algorithm.
Concerning the initial condition, for n = 0 no straightforward definition of F 0

ij is
possible, and it can be chosen rather arbitrary. One has then to insure that enough time
steps are computed, say m = M , to obtain FM

ij being in steady state. For n > 0, similarly
to section 3.2, one can compute Fm

ij only for a fixed number of time steps, say m = M ,

using F 0
ij = fn−1

ij . Once done, fn
ij = FM

ij .

4 NUMERICAL EXPERIMENTS

To test our algorithm, we compute two examples where the exact solution is known. In
all examples, Dirichlet boundary conditions are chosen for (1) always on the left and right
side of D and the Neumann boundary condition on the bottom of D such that specified
stationary pressure fulfils them exactly. We choose a rather coarse mesh with h = 0.125
to illustrate visibly the numerical approximations used in our algorithm. The time step
is chosen ∆s = 0.05, the time interval is (0, 0.3), and K = ρ = 1.

Firstly, we test if a straight horizontal groundwater table is reached when its initial
position is disturbed. To do so, g = 1, ϕ0 = Ψ, and

Ψ(x, z) = r(0, 0.75)− r(x, z) , r(x, z) :=
√

(x− 0.5)2 + (z − 1.5)2 . (25)

The numerical results for n = 0 can be seen in Figure 1. The numerical solution
approximates the steady state at t = 0.3 very well, but we do not present the results here.

The second example is proposed in such a way that the stationary solution is given by
P (x, z) = ln (r(0, 0.75)−1)− ln (r(x, z)−1) if no gravity is present, i.e., g = 0. The distance
function to the zero level set of P is given by Ψ in (25). The speed A(x, z) in (5) is chosen
such that f̄(x, z) = 0 in (5) for (x, z) ∈ D and Ψ(x, z) = 0, and θ = 1, i.e.,

A = − 1

∂zΨ
(∇P · ∇Ψ) . (26)

The exact pressure P and the velocity ~q−A~ez can be seen on the left picture in Figure 2.
We start the simulation with the horizontal groundwater table, i.e., ϕ0(x, z) = z−0.75.

The corresponding numerical results are given in Figure 2.
For an illustration of other properties of the method (including its convergence), the

numerical steady state results for the grid 12× 12 at t = 0.3 are presented in Figure 3.
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Figure 1: Numerical solution of Example 1, the contours of pressure p0, the groundwater velocity ~q0, and
the grid points (left picture), the contours of level set function φ0 and of extrapolated velocity f0 (middle

picture), and the advection velocity ~V 0 (right picture).
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Figure 2: Example 2, the exact stationary pressure P and the velocity ~q−A~ez (left picture), the numerical
initial pressure p0 and the velocity ~q0 −A~ez at t = 0 (middle picture) and at t = 0.3 (right picture).
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[3] P. Frolkovič, D. Logashenko, and G. Wittum. Flux-based level set method for two-

7
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