
XVIII International Conference on Water Resources
CMWR 2010

J. Carrera (Ed)
c©CIMNE, Barcelona, 2010

TIME SPACE DOMAIN DECOMPOSITION AND
REACTIVE TRANSPORT IN POROUS MEDIA

Florian Haeberlein∗† and Anthony Michel∗

∗ IFP
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Summary. In this paper we present some results concerning the application of time-
space domain decomposition methods for reactive transport problems. One of the main
objectives of our study is to design local time stepping strategies in order to concentrate
numerical efforts on the most reactive part of the domain. This work is a part of the
French ANR SHPCO2 project concerning high performance simulation of CO2 geological
storage.

1 Introduction

In the context of the ANR SHPCO2 project we are interested in the development of new
algorithms to improve the performance of reactive transport solvers for CO2 geological
storage. In order to validate the solutions proposed by different teams, we have designed
a synthetic test case (cf.Michel, Haeberlein and Trenty in [6]) that is representative for
the industrial process but simple enough to be useful in the prototype development stage.

The storage field is a deep saline aquifer with a thickness of about one hundred metres.
The flow is permanently controlled by lateral pressure boundary conditions. For the sake
of simplicity, we model the disequilibrium due to the injection of large amounts of CO2

by a locally perturbed initial condition. Those problem characteristics are illustrated in
figure 1. The orange circle represents the area of initial perturbation where most of the
chemical phenomena will occur. The strong hydrodynamism present in this case results in
a strong coupling of transport and chemistry processes that induce numerical difficulties
localised in time and space.

We consider a chemical system of twelve species present in four different phases as
follows: CO2(g) (gaseous), H2O, H+, OH−, Na+, Cl−, CO2(aq), HCO−

3 , Ca++, SiO2(aq)
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Figure 1: 2D Geometry

(aqueous solution), Calcite (mineral phase) and finally Quartz (mineral phase). Reactions
between the species are modelled by the following reactions:

Equilibrium reactions Kinetic reactions
H2O ⇐⇒ H+ + OH− Calcite + H+ ←→ Ca++ + HCO−

3

CO2(g) ⇐⇒ CO2(aq) Quartz ←→ SiO2(aq)
H2O + CO2(aq) ⇐⇒ HCO−

3 + H+

2 Reactive Transport Modelling

Having introduced the problem on a chemical and physical level, we formulate now the
mathematical modelling. We consider a chemical system containing I mobile species and
I immobile species (distinguished by bars). We numerate such as the first I species are
mobile and the last I species are immobile. A chemical reaction j is entirely described
by its stoichiometric coefficients sij for the i = 1, . . . , I + I species. We obtain therefore
a stoichiometric matrix S in which a column correspond to a reaction and a line to a
species. Now, ci=1,...,I correspond to the first I lines of S and ci=I+1,...,I+I to the last I
lines of S. Respecting this order, a stoichiometric matrix can be written as follows

S :=

(
S1

S2

)
,

where S1 describes the coefficients for the mobile species and S2 the coefficients for the
immobile species. A reactive transport system can be written as

∂t(φc) + L(c) + S1R(c, c) = q

∂t(φc) + S2R(c, c) = 0,
(1)
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where c, c are the unknown concentrations, φ the porosity, L a linear transport operator,
R(c, c) are the reaction rates as functions of the unknown concentrations and q is a source
term.

Following the reduction technique proposed by Kräutle in [5], we can reformulate the
problem (1) as follows

∂t(φη) + L(η) = 0

∂t(φη) = 0

∂t(φξhet − φξhet) + L(ξhet) = (A1,het − A2,het)Rkin(c, c)

∂t(φξkin) + L(ξkin) = A1,kinRkin(c, c)

∂t(φξkin) = A2,kinRkin(c, c)

Q(c, c) = 0,

(2)

where Q(c, c) describes mass action laws for reformulated equilibrium reactions and η,
η, ξhet, ξhet, ξkin and ξkin are linear combinations of the individual concentrations c and
c. System (2) reduces the number of coupled equations and reveals the structure of the
interactions between transport and chemistry.

Following the developments of Amir and Kern (cf. [1]) we can now introduce new global
variables

C :=

 η
ξkin

ξhet

 ; F :=

 0
0

−ξhet

 ; T := C + F ; W :=

(
η

ξkin

)
,

where T is the total part of purely mobile and mixed components, C its mobile part and
F its fixed part and W denotes the total concentration of purely immobile components.
System (2) can now be reformulated as

∂t(φC) + ∂t(φF ) + L(C) + RT
kin = 0 (3a)

∂t(φW ) + RW
kin = 0 (3b)

T = C + F (3c)

F = Ψ(T, W ) (3d)

RT
kin = θ(T, W ) (3e)

RW
kin = ϑ(T, W ), (3f)

where θ and ϑ are functions of T and W defining the local kinetic reaction rates. Ψ denotes
a non linear implicit function which represents the result of a reactive flash computation.
Following [5] and [1] we solve equations (3a) - (3c) with a global Newton approach with
nested local nonlinear problems (3d) - (3f). The derivatives of (3d) - (3f) are obtained by
chain rule and implicit function theorem.
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3 A simplified two species model

We consider a small chemical system of two species denoted by u and v where u is
a mobile species and v is a fixed species. We assume that the chemical system is only
governed by the single kinetic reaction u ←→ v characterised by the following reaction
rate law

R(u, v) := k(x)(v −Ψ(u)).

Ψ(·) is in general a non linear sorption isotherm function and k(x) is a local filter function
modelling reactive areas.

In this case, the model reduces to a system of two coupled equations:

∂t(φu) +L(u) −R(u, v) = f
∂t(φv) +R(u, v) = 0

(4)

where L(u) := div(−a∇u + bu) is a linear transport operator including advection and
diffusion-dispersion processes and f a source term.

4 Domain Decomposition

We consider a numerical domain in space R2 and in time [0,∞[. We define two over-
lapping subdomains Ω− =] −∞, L] × R, Ω+ = [−L, +∞[×R with L ≥ 0 as well as the
interfaces Γ12 = {x = L}×R, Γ21 = {x = −L}×R. We can write a domain decomposition
algorithm for system (4)

∂t(φuk+1
1 ) + div(−a∇uk+1

1 + buk+1
1 )−k(vk+1

1 −Ψ(uk+1
1 )) = 0 in Ω− × [0, T ]

∂t(φvk+1
1 ) +k(vk+1

1 −Ψ(uk+1
1 )) = 0 in Ω− × [0, T ]

B−(uk+1
1 , vk+1

1 ) = B−(uk
2, v

k
2) on Γ12 × [0, T ]

∂t(φuk+1
2 ) + div(−a∇uk+1

2 + buk+1
2 )−k(vk+1

2 −Ψ(uk+1
2 )) = 0 in Ω+ × [0, T ]

∂t(φvk+1
2 ) +k(vk+1

2 −Ψ(uk+1
2 )) = 0 in Ω+ × [0, T ]

B+(uk+1
2 , vk+1

2 ) = B+(uk
1, v

k
1) on Γ21 × [0, T ]

(5)

An initial guess (u0
1, v0

1) and (u0
2, v0

2) has to be furnished in order to start the iteration.
Then, the problems can be solved separately in both subdomains Ω1 and Ω2 providing
appropriate coupling operators B+ and B− on the interfaces Γ12 and Γ21. One might
advise that the convergence rate of algorithm (5) is strongly affected by the choice of the
coupling operators B± on the interfaces.

4.1 Fourier analysis in the linear case

In this section we consider a linear function Ψ(u) = cu which allows us to develop a
rigorous mathematical analysis. Following the ideas proposed by Gander and Halpern
in [4] for a scalar reaction-advection-diffusion equation we introduce the transmission
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operators
B+(u) = − a∂u

∂x
+ bxu + p+u

B−(u) = a∂u
∂x
− bxu + p−u

(6)

where p+, p− are real parameters.
Combining (5) and (6) one can express the convergence rate of the algorithm in Fourier

space as follows

ρ(p+, p−, ξ, τ) =

∣∣∣∣ (bx + σ)− 2p−

(−bx + σ) + 2p−
· (−bx + σ)− 2p+

(bx + σ) + 2p+
e−

2L
a

σ

∣∣∣∣
with σ :=

√
b2
x + 4a(φ i τ + aξ2 + by i ξ − k2c

φ i τ+k
+ kc) where ξ is the dual variable of y and

τ the dual variable of t.
In general, we have the property that the larger the overlap L, the faster the conver-

gence. In practice, the overlap is chosen as L ≈ ∆x and parameters are set symmetrically
p = p+ = p−. In this case, one can prove that the optimal parameter p∗ is solution of the
following best approximation problem (cf. [4]):

ρ∗ = ρ(p∗, ξ∗, τ ∗) = min
p>0

max
τ ∈ [ π

2T
, π

∆t
],

ξ ∈ [ π
Ly

, π
∆y

]

ρ(p, ξ, τ) (7)

This problem might be solved numerically but analytical and asymptotic formulae are
already available for special cases.

5 Numerical results

In the previous section we have developed the domain decomposition theory on a linear
function. We are interested in how it is still applicable in a non linear context.

We have developed a numerical 1D prototype that uses an implicit Euler approximation
in time and a weighted two-points diffusion and an advection upwind finite volume scheme
in space. Numerical solution is obtained by a standard Newton method applied to the
global reactive transport system.

5.1 Non linear sorption isotherm

We consider an adsorption process that is modelled by a BET isotherm law:

Ψ(u) =
QsKLu

(1 + KLu−KSu)(1−KSu)

BET theory is a rule for the physical adsorption of gas molecules on a solid surface and
serves as the basis for an important analysis technique for the measurement of the specific
surface area of a material (cf. [3]). This law is insofar mathematically interesting as it is
neither convex nor concave (cf. figure 2).
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Figure 2: BET Isotherm with QS = 2, KS = 0.7, KL = 100

5.2 Problem parameters

We inspired our test case from the example of section 1. For numerical simulations,
we set the domain to Ω = [−5, 5] with ∆x = 0.05. Simulation time is [0, 1]. Physical
parameters are φ = 1, a = 0.01, b = 0.7, k = 0.01, QS = 2, KS = 0.7, KL = 100.
Initial conditions are set in the following way: considering (u0, v0) = (0, 0) which is an
equilibrium state, we perturbate this state for u0 with an amplitude of 1.0 in a small
area (at x ∈ [−4.75,−3.75]) which represents approximately 10% of the whole domain.
Boundary conditions for u are set to Dirichlet with constant values to the equilibrium
state ub = u0.

The initially present perturbation of u turns into an equilibrium state while it is ad-
sorbed from fixed species v. This creates a strong concentration gradient in v that has
not been present before. As species u is mobile, the concentration gradient is transported
by diffusion and advection. Note that due to the initial perturbation in u we have created
a highly reactive zone. Nevertheless, for the major part of the domain the solution stays
nearby an equilibrium state and is more or less stationary.

5.3 Monodomain vs. Domain Decomposition solution

In numerical simulations one often limits the time step by controlling the variation of
the solution. We also want to do so and fix a time step of ∆t = 0.25, i. e. we proceed four
time steps in our time window. Note that this choice is not a result of stability condition
as we use a fully implicit approach. We are interested in testing the performance of
domain decomposition techniques and their capacity to use local time steps. Therefore,
we proceed two different numerical simulations and compute approximately the numerical
effort in order to compare the competitiveness of our new approach.

First, we calculate a mono-domain approximation using the time step in the entire
domain. We set the solution at the previous time step as initial guess for the Newton
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iteration and iterate until we have reached a precision of 10−8. In order to reach conver-
gence, (8, 6, 6, 6) iterations are necessary for the four time steps which represents a total
effort of (8 + 6 + 6 + 6) ∗ 200 = 5200.
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Figure 3: F. l. t. r.: Domain decomposition solution at time t = 0, 0.5, 1

Second, we proceed a domain decomposition method where we set Ω1 =]−5,−2.95] and
Ω2 = [−3.05, 5], i. e. there is an overlap of size 0.1. In figure 3 we show the solution of the
Schwarz algorithm after three iterations in the domain decomposition case, for the initial
state t = 0.0, the intermediate state t = 0.5 and the final time t = 1.0. Visually, one sees
that the initial perturbation touches the interface only at the end of the time window. It is
therefore convenient to limit the time step to ∆t1 = 0.25 only in the left subdomain while
in the right subdomain we can use a coarser time step, say ∆t2 = 1. For the first Schwarz
iteration we set the solution of the previous time step as initial guess for the Newton
iteration, as we do in the monodomain case. Upon the second Schwarz iterate, we set the
solution at the previous Schwarz iteration as initial guess for Newton iterations. For the
Schwarz algorithm, we set the initial guess for the interface conditions values to zero and
use the parameter for Robin conditions predicted by the theory for linear functions (popt =
0.7574). Note that this parameter is also the parameter that offers the best numerical
performance for the Schwarz algorithm with the non linear function Ψ. We observe that
we need 3 iterations of the Schwarz algorithm in order to reach a precision of 10−6. For the
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first Schwarz iteration we need (8, 6, 6, 6) Newton iterations for the left subdomain and (1)
Newton iterations in the right subdomain. In the second iterate we need only (1, 1, 1, 1)
and (4) iterations, in the third we need (3, 3, 3, 3) and (1) iterations. As a consequence, the
total effort is ((8+6+6+6)+(1+1+1+1)+(3+3+3+3))∗40+((1)+(4)+(1))∗160 = 2640.

To put in a nutshell, by using local time stepping and an optimised Schwarz waveform
relaxation algorithm, we reduced the effort for nearly 50 %.
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