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Summary. A new Central Weighted Essentially Non-Oscillatory scheme for the solution
of the shallow water equations expressed directly in contravariant formulation is presented.
The proposed central WENO scheme is the extension of the methodology presented by
many authors1,2,3,4 into the context defined by contravariant form of the equations. One
of the most important elements of the C-WENO scheme based on this approach involves
the advancing from time level tn to time level tn+1 of the cell averaged values of flow
variables. The extension of the above mentioned methodology into the contravariant
environment implies that the contravariant shallow water equations must be expressed in
integral form. An element of novelty presented in this paper regards the definition of a
formal integral expression of the shallow water equations in contravariant formulation, in
which Christoffel symbols are avoided. The WENO reconstructions are performed by a
two dimensional interpolating procedure taking into account the curved coordinate lines;
in the computational domain the spatial discretization step is constant: consequently the
problems related to negative linear weights on unstructured meshes are overcome. The
two dimensional reconstructions have a fifth-order spatial accuracy. A Natural Continuous
Extension into a Runge-Kutta solver is involved in a fourth-order time discretization of
motion equations. The proposed scheme ensures the satisfaction of the exact C-property.

1 INTRODUCTION

Many authors solve shallow water equations by using high-resolution methods for hy-
perbolic systems of conservation laws. In this context, Essentially Non-Oscillatory (ENO)
and Weighted Essentially Non-Oscillatory (WENO)5 schemes are the most efficient tools.

Flow simulations over computational domains characterized by a complex boundary can
be performed by numerical integrations of motion equations on a generalized curvilinear
boundary conforming grid. In this approach the domain is greatly simplified, since it is
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transformed into a fixed rectangular region and the WENO reconstructions are performed
directly in transformed space where the computational space step is constant. In order to
make use of a general boundary-conforming curvilinear coordinate system, two different
strategies can be followed: in the first strategy, motion equations are projected onto
directions identified by the Cartesian reference system and are modified by transforming
partial derivatives with respect to Cartesian coordinates to partial derivatives with respect
to curvilinear coordinates; in the second strategy, motion equations are expressed directly
in covariant or contravariant formulation.

The introduction of WENO schemes into the curvilinear coordinate context (defined
by the first strategy) implies the carrying out of Cartesian based flow variable reconstruc-
tions on curved coordinate lines. When high order reconstructions are developed on very
nonuniform grids a contradiction could appear: the strongly curved coordinate line on
which the flow variable must be reconstructed could become almost orthogonal to the
Cartesian direction, on which the flow variable is based.

The second strategy is represented by the possibility to express motion equations di-
rectly in the coordinate basis defined by the numerical grid. The equations become a sys-
tem of balance laws with flux functions that depend explicitly on the spatial coordinates.
In generalized curvilinear coordinates, contravariant components are vector components
defined on a basis which is locally normal to the curvilinear coordinate lines.

In numerical solutions of motion equations in contravariant formulation, a contradiction
appears. It is well known that a strong conservation form of convective terms can preserve
freestream properties without any pollution due to grid skewness. In the contravariant
formulation of motion equations, covariant derivatives give rise to Christoffel symbols.
These terms are extra source terms. They come in with the variability of base vectors
and do not permit the definition of convective terms in a strong conservation form. As a
consequence, numerical discretization of the Christoffel symbols can reduce the numerical
accuracy.

The original contribution of this work is the definition of a new Central Weighted
Essentially Non-Oscillatory scheme for the solution of the shallow water equations ex-
pressed directly in contravariant formulation. The proposed central WENO scheme is
the extension of the methodology presented by many authors1,2,3,4 into the context de-
fined by contravariant form of the equations. One of the most important elements of
the C-WENO scheme based on this approach involves the advancing from time level tn

to time level tn+1 of the cell averaged values of flow variables. In order to perform the
advancing in time of cell averaged values of the flow variables, Caleffi et al.4 use the in-
tegral formulation of one-dimensional shallow water equations. Jiang et al.2 perform the
computation of cell averaged values of flow variables by the numerical discretization of
two-dimensional cell integrated motion equations on a rectangular grid. Consequently
the extension of the above mentioned methodology into the contravariant context implies
that the contravariant shallow water equations must be expressed in integral form.

An element of novelty presented in this paper regards the definition of a formal in-
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tegral expression of the shallow water equations in contravariant formulation in which
Christoffel symbols are avoided. The WENO reconstructions are performed by a two di-
mensional interpolating procedure taking into account the curved coordinate lines; in the
computational domain the spatial discretization step is constant: consequently the prob-
lems related to negative linear weights on unstructured meshes are overcome. The two
dimensional reconstructions have a fifth-order spatial accuracy. A Natural Continuous
Extension into a Runge-Kutta solver is involved in a fourth-order time discretization of
motion equations. The proposed scheme ensures the satisfaction of the exact C-property.

2 SHALLOW WATER EQUATIONS IN CONTRAVARIANT FORMULA-
TION

We define the water depth as h and the depth averaged velocity vector as u⃗, whose
components are defined in the Cartesian system of reference. Let be v⃗ = u⃗h. The shallow
water equations are written directly in the contravariant formulation in a two-dimensional
curvilinear coordinate system.

In order to introduce the notation to be used, we consider a transformation xl =
xl(ξ1, ξ2) from the Cartesian coordinates x⃗ to the curvilinear coordinates ξ⃗ (note that
superscripts indicate components and not powers in the present notation). Let g⃗(l) =
∂x⃗/∂ξl be the covariant base vectors and g⃗(l) = grad(ξl) the contravariant base vectors.
The metric tensor and its inverse are defined by glm = g⃗(l) · g⃗(m) and glm = g⃗(l) · g⃗(m)

(l,m = 1, 2). The Jacobian of the transformation is given by
√
g =

√
det(glm). Let r

l be
the contravariant components in the curvilinear coordinate system of the vector v⃗. The
transformation relationships between vector v⃗ in the Cartesian coordinate system and its
contravariant and covariant components, rl and rl, in the curvilinear coordinate system
are6:

rl = g⃗(l) · v⃗ , v⃗ = rlg⃗(l) ; rl = g⃗(l) · v⃗ , v⃗ = rlg⃗
(l) (1)

The same relationship also applies to other vectors. In the following equations, a comma
with an index in a subscript denotes covariant differentiation. The covariant derivative is
defined as ul

,m = ∂ul/∂ξm + Γl
mku

k where Γl
mk is the Christoffel symbol that is given by

Γl
mk = g⃗(l) · ∂g⃗(k)/∂ξm.
The shallow water equations in contravariant formulation are

∂h

∂t
+ rl,l = 0 (2)

∂rl

∂t
+

(
rlrm

h

)
,m

= −Ghglm(h+H),m −Rl (3)

where Rl = G(rl|r⃗|)/(χ2h2) is the bed resistance term, χ = (1/M)h1/6 is the friction
coefficient, M is the Manning friction factor, G is the constant of gravity and H is the
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bed height and
(

rlrm

h

)
,m

is the covariant derivative of rlrm

h
, and is given by:

(
rlrm

h

)
,m

=
1
√
g

∂

(
√
g
rlrm

h

)
∂ξm

+

(
rmrk

h

)
Γl
mk (4)

It has to be noticed that the simple integration of Equation (3) over an arbitrary surface
element does not avoid Christoffel symbols. Our main goal is to formalize an integral
expression of the contravariant shallow water equations in which Christoffel symbols are
absent.

Let us integrate Equation (2) over an arbitrary surface element ∆A whose contour line
is L: ∫

∆A

∂h

∂t
dA+

∫
L

rmnmdL = 0 (5)

The second integral of Equation (5) has been transformed by Green’s theorem and nm

is the covariant outward normal. In order to express the momentum conservation law
in integral form, we take a constant parallel field of vectors λk and equate the rate of
change of momentum of a material volume to the total net force in this direction: this is
necessary since the direction in space of a given coordinate line is changing, in contrast
to the Cartesian case.

We choose, as parallel vector field, the one which is normal to the coordinate line on
which the ξl coordinate is constant at point P0 ∈ ∆A. The coordinate values of P0 are ξ

1
0

and ξ20 . The contravariant base vector, which is normal to the coordinate line on which
ξl is constant, at point P0 is given by g⃗(l)(ξ10 , ξ

2
0). From Equation (1) we can deduce the

transformation relationship between the vector g⃗(l)(ξ10 , ξ
2
0) and its covariant components

λk(ξ
1
0 , ξ

2
0) in the curvilinear coordinate system:

λk(ξ
1
0 , ξ

2
0) = g⃗(l)(ξ10 , ξ

2
0) · g⃗(k)(ξ10 , ξ20) = δlk (6)

where δlk is the Kronecker symbol.
Let λk(ξ

1
0 , ξ

2
0) be the vector which defines the parallel vector field. Let g⃗(k)(ξ

1, ξ2) be
the covariant base vector which is tangent to the ξk coordinate line at the generic point
P whose coordinates are ξ1 and ξ2. The covariant components of the vector, which are
expressed as a function of the above mentioned covariant base vector g⃗(k), are:

λk(ξ
1, ξ2) = g⃗(l)(ξ10 , ξ

2
0) · g⃗(k)(ξ1, ξ2) (7)

For the sake of brevity, we indicate ⃗̆g(l) = g⃗(l)(ξ10 , ξ
2
0) and g⃗(k) = g⃗(k)(ξ

1, ξ2). We integrate
over an arbitrary surface element ∆A and resolve in the direction λk the rate of change
of the depth-integrated momentum (per unit mass) and the depth-integrated force (per
unit mass). Consequently we get:∫

∆A

∂rk

∂t
λkdA+

∫
∆A

(
rkrm

h

)
,m

λkdA =

∫
∆A

[Ghgmk(h+H),m +Rk]λkdA (8)
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Since the field of vectors is parallel, λk,m = 0. By transforming the second integral on the
left hand side of Equation (8) by Green’s theorem and by using Equation (7) we get∫

∆A

⃗̆g(l) ·g⃗(k)
∂rk

∂t
dA+

∫
∆L

⃗̆g(l) ·g⃗(k)
rkrm

h
nmdL =

∫
∆A

⃗̆g(l) ·g⃗(k)[Ghgmk(h+H),m+Rk]dA (9)

Equations (5) and (9) represent the integral expressions of the shallow water equations
in contravariant formulation.

3 THE CENTRAL WENO SCHEME

The numerical integration of Equations (5) and (9) is performed by a central WENO
scheme. The discretization of the computational domain is based on a grid defined by
the coordinate lines ξ1 and ξ2 and by the points of coordinates i∆ξ1 e j∆ξ2, and on a
second staggered grid, defined by the points of coordinates

(
i+ 1

2

)
∆ξ1 and

(
j + 1

2

)
∆ξ2.

tn is the time level of the known variables, while tn+1 = tn + ∆t is the time level of
the unknown variables. It must be stressed that the advancing in time of the solution
is performed on the staggered grid. The state of the system is known in the center

of the original grid and is defined by the cell averaged values ˜̄hi;j, ˜̄ri;j. The calculation

procedure is based on the following sequence: 1) reconstruction of cell averages ˜̄h
(n)

i+ 1
2
;j+ 1

2

and ˜̄r
l(n)

i+ 1
2
;j+ 1

2

on the staggered grid from cell averages ˜̄h
(n)
i;j , ˜̄r

l(n)
i;j on the original grid at time

level tn; 2) reconstruction of point values h
(n)
i;j and r

l(n)
i;j defined on the original grid from

cell averages ˜̄h
(n)
i;j and ˜̄r

l(n)
i;j defined on original the grid at time level tn; 3) reconstruction

of flux derivatives on the original grid from point values h
(n)
i;j and r

l(n)
i;j on the original

grid at time level tn; 4) computation of point values h
(n+1/2)
i;j , r

l(n+1/2)
i;j , h

(n+1)
i;j and r

l(n+1)
i;j

by a Natural Continuous Extension into a Runge-Kutta solver; 5) advancing from time

level tn to time level tn+1 of cell averages ˜̄h
(n+1)

i+ 1
2
;j+ 1

2

and ˜̄r
l(n+1)

i+ 1
2
;j+ 1

2

on staggered grid by the

numerical integration of Equations (5) and (9); 6) destaggering by reconstruction of cell

averages ˜̄h
(n+1)
i;j and ˜̄r

l(n+1)
i;j on the original grid from cell averages ˜̄h

(n+1)

i+ 1
2
;j+ 1

2

and ˜̄r
l(n+1)

i+ 1
2
;j+ 1

2

on the staggered grid.
Fourth-order accuracy in time is obtained by the calculation procedure indicated in

Levy et al.2 and Caleffi et al.4 where a Simpson’s quadrature rule is involved.
Time discretization of Equation (5) gives:

˜̄h
(n+1)

i+ 1
2
;j+ 1

2

= ˜̄h
(n)

i+ 1
2
;j+ 1

2

− ∆t√
ğ

3∑
s=1

Ns

[
2∑

α=1

(∫
∆ξα+

√
grαdξβ −

∫
∆ξα−

√
grαdξβ

)](tn+βs∆t)

(10)
where tn + βs∆t indicates the time level at which the term inside the square brackets

is evaluated. Ns =
[
1
6
, 2
3
, 1
6

]T
are the weights and βs =

[
0, 1

2
, 1
]
are the nodes of the

quadrature.
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Time discretization of Equation (9) gives:

˜̄r
l(n+1)

i+ 1
2
;j+ 1

2

= ˜̄r
l(n)

i+ 1
2
;j+ 1

2

− ∆t√
ğ

3∑
s=1

Ns

{∫
∆ξα+

⃗̆g(l) · g⃗(k)
rkrα

h

√
gdξβ −

∫
∆ξα−

⃗̆g(l) · g⃗(k)
rkrα

h

√
gdξβ

−
∫
∆ξ1

∫
∆ξ2

⃗̆g(l) · g⃗(k)
[
Ghgmk(h+H),m +Rl

]√
gdξ1dξ2

}(tn+βs∆t)

(11)

4 RESULTS AND DISCUSSION

In this section, the high-resolution shallow water equation solver described above is
validated against two benchmark test cases: the circular dam break test and the symmetric
channel with variable width test. The computed results are compared with analytical
solutions and previously published predictions.

The circular dam break test, proposed by Alcrudo & Garcia-Navarro7 and used by
many authors (e.g. Liska & Wendroff8), consist of a cylindrical dam with radius 11m in
the centre of a square domain (0, 50m)× (0, 50m). The initial water level is 10m inside
the dam and 1m outside the dam and water is initially at rest. Suddenly, the cylindrical
wall forming the dam is removed and time evolution of free surface and velocity fields
are calculated. A first simulation (simulation S1) is carried out on a Cartesian grid
made of 50 × 50 square cells, as in Alcrudo & Garcia-Navarro7 and Liska & Wendroff8;
a second simulation of the same test (simulation S2) is carried out on a curvilinear grid.
In simulation S2 the number of calculation cells inside the square (0, 50m) × (0, 50m)
is about 2425, that is similar to that used for the simulation carried out in Cartesian
grid (2500). In order to compare our results with those obtained by Alcrudo & Garcia-
Navarro7 and Liska & Wendroff8, Fig. 1 shows the contour plot of water level at 0.69s.
The numerical results obtained by our model on the grid used by Liska & Wendroff8

(simulation S1) are shown in Fig. 1 left; the numerical results obtained by our model on
the curvilinear grid (simulation S2) are shown in Fig. 1 right and in Fig. 3 left. As Fig.
1 shows, the circular symmetry is preserved very well; our numerical results are in good
agreement with results obtained Liska & Wendroff8.

A numerical simulation of a steady state flow with hydraulic and negative jumps is
performed by reproducing the symmetric channel with variable width proposed in Liska
& Wendroff8: for x < 10m, the channel width is equal to 40m; for 10m < x < 30m, the
southern and northern channel wall inclines inward with an angle of 15◦ to the x direction;
for 30m < x the channel width is constant and equal to 29.282m. The initial and inflow
conditions are the water depth h0 = 1m and Froude number Fr = 2.5. The simulation
(simulation S3) is carried out on a deformed grid made of 72× 32 cells (the same number
of cells used by Liska & Wendroff8), obtained by imposing a concave-left curvature to the
western and eastern boundaries of the domain used in Liska & Wendroff8. The grid used
in simulation S3 is shown in Fig. 2 left. The numerical results obtained by our model in
simulation S3 are shown in Fig. 2 right and in Fig. 3 right. Hydraulic jumps and negative
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Figure 1: Circular dam break. Left: contour plot of the water depth at time 0.69s; results of the simulation
carried out on the Cartesian grid used in Liska & Wendroff8 (S1). Right: contour plot of the water depth
at time 0.69s; results of the simulation carried out on the curvilinear grid (S2).

Figure 2: Symmetric channel with variable width. Left: calculation grid used in the simulation S3. Right:
contour plot of the water depth (S3).

Figure 3: Left: circular dam break, surface plot of the water depth at time 0.69s; results of the simulation
carried out on the curvilinear grid (S2). Right: symmetric channel with variable width, surface plot of
the water depth (S3).
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jumps caused by the presence of concave corners are resolved properly and the results are
in good agreement with the numerical results presented by Liska & Wendroff8.

5 CONCLUSIONS

A new Central Weighted Essentially Non-Oscillatory scheme for the solution of the
shallow water equations expressed in contravariant formulation has been presented. A
formal integral expression of the shallow water equations in contravariant formulation, in
which Christoffel symbols are avoided, has been defined. The WENO reconstructions are
performed by a two dimensional interpolating procedure taking into account the curved
coordinate lines. The proposed scheme ensures the satisfaction of the exact C-property.
The model is validated against two benchmark tests, and the results compare very well
with theoretical and alternative numerical solutions.
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