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Summary. The European Directive 2007/60, introducing important modifications on flood 
risk evaluation and management, calls for extensive application in Europe of inundation 
models. Responding to the need of finding accurate but fast approaches, the present work 
describes a new implicit 2D parabolic flood inundation approach, based on an integrated finite 
difference scheme. The resulting non-linear system of equations is linearised using the Linear 
Theory approach to improve convergence, while the resulting linear system is then solved by 
means of the Jacobi iterative approach, which can be massively parallelized. The resulting 
model was tested on a number of numerical cases, offering a good compromise between 
computational speed and accurate reproduction of the flood event. 

 
 
1 INTRODUCTION 

The Flood Directive 2007/60 of European Union(1) introduces important modifications on 
flood risk evaluation and management. The new directive prescribes the definition of flood 
hazard maps and flood risk maps, along with the development of flood risk management 
plans. According to the directive, “assessments, maps and plans should be based on 
appropriate ‘best practice’ and ‘best available technologies’ not entailing excessive costs in 
the field of flood risk management”. Therefore, to comply the directive, methods for 
modeling flood inundation should be reliable and capable of generating the required hydraulic 
information in an appropriate level of detail, but also practicable in terms of computational 
time and costs as well as input data requirement, since application over large inundation areas 
will be inevitably needed. In order to meet all these requirements, the use of 2D hydraulic 
models which describe flow processes using various degrees of approximation, either in flow 
equations or in computation scheme, seems recommendable. The reduced complexity allows 
these models to be faster and less demanding in terms of computational burden and data 
requirement with respect to more complex models, moreover different works showed that  the 
use of simplified models does not necessarily implies a loss of accuracy and reliability in 
results. Consequently, the present work describes a flood inundation model which should 
offer a good compromise between computational speed and accurate reproduction of the flood 
event. 
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2 THE PROPOSED MODEL 

2.1 The equations and the computational scheme 
To date, several computational schemes for 2D hydraulic modeling have been proposed in 

literature. Flood inundation models are generally based on the finite differences, finite 
elements or finite volumes methods. More recently the Runge-Kutta Discontinuous Galerkin 
method has been successfully applied to 2D/3D problems in the case of hypercritical, trans-
critical and convection dominated diffusive problems (4). In the present paper an hydraulic 
model based on the Integrated Finite Difference approach, similar to the finite volume 
method, is proposed for representing diffusion dominated phenomena such as flood plain 
inundation events. 
The model herein proposed is based on the shallow water equations written in diffusive form. 
In the literature, the ability of diffusive approximations to correctly simulate flooding 
phenomena is still under discussion; however, to date models based on diffusive equations 
have been tested successfully against measurements from actual flood events, and they often 
performed as well as models based on complete equations (2) (3). As such, it is hypothesized 
that uncertainties over the data set (especially topography and roughness), dominate and thus 
influence model results to a greater extent than errors and approximations due to simplified 
mathematical description (3) (5). Lastly, models based on diffusive equations provided good 
results when tested against both analytical and results from physical or alternative numerical 
solutions  (5) (6) (7). 
Dropping the convective and the local acceleration terms from the original Saint Venant 
equations, the following equations can be derived for a generic cell i connected with ni 
adjacent cells, after integration in space of the point mass balance equations over the entire 
cell domain: 
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In Eq. (1), Q is the discharge passing through the contact face k between cells i and j; xH ∂∂ /  
is the water surface slope between the cell centres, B and n are the surface width and the 
Manning roughness coefficient of the contact face k; H y z= +  is the water elevation in the 
cell centre, which is defined as the sum of the terrain elevation z  plus the water stage y ; V is 
the volume stored in the cell and q is the discharge entering or leaving the cell from outside 
the study area (assumed positive when flowing inwards). 

The system of partial differential equations of Eq. (1) can then be integrated using the 
integrated finite difference (IFD) scheme. The study area is schematized through polygonal 
elements (non necessarily regular), the cells, connected along the contact faces. The head 
losses among the cell centres are estimated by integrating in space the momentum equations, 
on the assumption of a linear variation of the water stage. Thus, the system of Eq. (1) may be 
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written as: 
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where Ω  is the cell surface area and θ  is the time discretisation coefficient.  
Such schematization allows to solve the inundation model in analogy with a pipe network, 
where the centres of the cells correspond to the junction nodes and the flow through the 
connecting contact faces corresponds to the flow in the pipes. Accordingly the equations may 
be written using a matrix formulation, which was introduced to derive the Global Gradient 
Algorithm (GGA) (8), which has become the de facto standard in water distribution network 
steady state analysis and was recently modified to account for unsteady flow (9): Eq. (2) can be 
re-written in matrix form as: 
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The elements in system (3) are herein described: 
[ ]tnpttt QQQQ ,,2,1 ,,, L=  is the discharges vector [1, np], 
[ ]tnpttt HHHH ,,2,1 ,,, L=  is the vector of unknown water stages [1, nn], 
[ ]tntottnntnnt HHHH ,,2,1 ,,, L++=  is the vector of known water stages [1, ntot], 
[ ]tnpttt qqqq ,,2,1 *,,*,** L=  is the vector of known terms [1, nn], 

where (np) is the number of links, (nn) is the number of nodes with unknown water stage, (np) 
is the total number of nodes, (ntot –nn) is the number of nodes with unknown water stage. 

A11 is a diagonal matrix with dimension [np, np] where the elements are defined as: 

( ) ( )
( )titj

tjti

ij

tijij

yy
yy

B

Qn
kkA

,,

3/7
,

3/7
,

2

,
2

11 7
3,

−

−
=

−−

 
(4)

A22 is a diagonal matrix with dimension [nn, nn] where the elements are defined as: 
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The generic element of the vector q*t is defined as: 
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The topology of the network (nodes and links) is described by matrix 12A , defined as: 
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In order to guarantee the existence of a unique solution, the water elevation must be known 
in at least one cell. This implies the partition of  12A  in two sub-matrices: 

[ ]12 12 10A A A= M  (8)

where A12 = A21
T describes the links between the unknown water head nodes, while  A10 = 

A01
T describes the links with the known head nodes. 
The system of Eq. (3) is linearised by  using the Linear Theory (LT) approach (10). In 

preliminary tests, the authors found that, for the accuracy requirements in typical flood 
inundation events (around 10-3 m),the LT approach requires more or less the same number of 
iterations of the Newton Raphson approach, with the advantage of a resulting symmetrical 
system matrix to be handled. In order to apply LT to the solution of the non linear system, the 
following recursive scheme is used: 
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(9)

As can be noticed from Eqs. (9), the iterative solution requires the solution of a system of 

linear equations, which matrix ( ) 1

21 11 12 22A A A Aτ −⎡ ⎤−⎢ ⎥⎣ ⎦
 is a sparse symmetrical matrix with 

dominant diagonal. These are conditions that allow for the use of the recursive Jacobi 
approach, instead of more direct frontal Gauss-Seidel or matrix factorization approaches. 

2.3 Advantages of the proposed approach  
Hydraulic models integrated in time using implicit schemes are not only more accurate, but 

also more stable than the explicit ones, thus allowing for longer simulation time steps. 
However, implicit schemes need a considerably greater computational burden, and this may 
prevent their use in large areas, for which simplified explicit and/or locally integrated 
schemes are currently used. The proposed solution scheme may compensate for this drawback 
in terms of computational time. 

The system of Eqs. (9) is sparse and symmetric therefore, available techniques for sparse 
matrices can be effectively employed. Unfortunately, these techniques, which are extremely 
efficient by accounting for sparsity and symmetry, cannot be efficiently parallelized, thus 
losing the advantages provided by the most recent parallel computing. Fortunately, the main 
diagonal of the system matrix is strictly dominant and the Jacobi approach, which is highly 
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parallelizable, can be effectively implemented and used. 

3 NUMERICAL CASES   
After some preliminary tests, the IFD-GGA model has been applied to a number a 

numerical cases. Two of these cases are herein described. The aim is to evaluate the model 
performances in terms of accuracy and computational time, and to test the convergence of the 
solution method in various flow conditions.  

It must be noted that the evaluation of reduced complexity models in numerical cases has 
been rarely applied in literature(6); indeed, the majority of research works describe model 
applications in real world cases, but very often this does not permit to carry out an in-depth 
analysis of applied models. For example, in a real flood event the calibration procedure plays 
a major role and may compensate for model limitations if the quantity and quality of available 
data are limited. On the contrary, numerical cases are based on simplified and well controlled 
conditions, reducing the number of variables to be considered and the uncertainty on their 
influence on model performance.  

3.1 Case 1: channel  
The first presented case deals with 1D flow over a regular channel with a mild slope. The 

geometry, resumed in Table 1, has been chosen to test the ability of IFD-GGA model to 
simulate a diffusive wave, since significant lamination effect is expected. 

 
Bed slope 10-4 Section shape rectangular 

Channel width 250 m Manning Roughness 0.05 m -1/3s 
Channel length 50 km   

Table 1 : Geometry of case 1 

The hydrograph starts from an initial condition of uniform flow along all the channel, with 
a discharge of 10 m3s-1; at t=0, the discharge is linearly increased from upstream, going from 
10 to 100m3s-1 in 5 hours; the discharge values remains constant for the next 30 hours and 
then decrease linearly in 5 hours from 100 to 10 m3s-1. Please note that the geometry and the 
flow conditions were chosen in order to have a very large channel, so that the form of 
momentum equation used in IFD-GGA model (eq. 1) may be considered a good 
approximation. The downstream boundary condition is the uniform flow. The produced result 
were compared with the well known model HEC-RAS(11). 

Three computation grids have been considered: one with 400x1 cells of 125x250m size, a 
second with 200x1 cells of 250x250m and another with 100x1 cells of 500x250m. This means 
that each grid maintains a channel width of 250m, while the longitudinal grid resolution 
varies. For each grid, simulations with different time steps have been performed (see Table 2).  

The first relevant observed result is that the accuracy of solution does not vary significantly 
until a certain time step value is reached; beyond this value the solution provided by the 
model shows oscillations and is no longer comparable with HEC-RAS solution, although the 
solution scheme still converges. Also, spatial resolution influences the maximum value of 
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employable time step but this does not affect the accuracy of solution (see Table 2).  
 Please note that the short time steps are compensated by the Jacobi solution method, 

which is very fast; to give a reference value, the simulation with the 250x250m grid and a 
time step of 5s over a period of 72 hours took approximately 30s on a computer with a 1.86 
Ghz processor and 2Gb RAM.  

Figure1 shows the results in terms of flow profile for the 250x250m grid and a time step of 
5s, compared with HEC-RAS results. The profiles computed by the two models are very 
regular and almost coincident, both in general shape and position of wave front at the 
different time intervals. The wave simulated by the IFD-GGA model is slightly faster, 
however the RMSE against HEC-RAS results is always small (the maximum value, computed 
for time step t = 21h30m, is around 2 cm). The downstream discharges are also very similar. 
Most important, the IFD-GGA model reproduces with a very good accuracy the wave 
attenuation, even if the computation scheme is approximated with respect of the complete 
scheme based on full De Saint Venant Equations used by HEC-RAS 
 

tX ∆−∆  1s 2s 5s 10s 15s 30s 60s 
125m Y Y N     
250m Y Y Y Y Y N  
500m Y Y Y Y Y Y Y      

Table 2 : results for case 1. “N” indicates that the convergence of solution scheme is 
not achieved, while “Y” indicates that the simulation was successfully completed. 

3.2 Case 2: horizontal plane  

The wave routing on a flat slope is a case in which hydraulic models may be more subjected 
to instability, particularly when flow velocity and water surface slope are also reduced. It is 
worth noting that, according to recent works (12), in such conditions explicit diffusive models 
show significant stability problems, especially in presence of high resolution grids (cell size 
below 10m) and deep water stages. Therefore their major advantage, that is, a very reduced 
computational time, may be compensated by implicit models if larger time steps may be used. 
In order to test the proposed IFD- GGA model in these conditions, a series of simulations on 
an horizontal plane were performed. The computation grid consists of 20x20 cells with a 
10x10m size; the simulation starts from an initial condition of null water stage, without 
incoming discharge; at t=0, a discharge varying linearly from 0 to 50m3s-1 in 1 hour enters 
from one corner; then the discharge value remains constant for the next 2 hours and decrease 
linearly in 1 hour from 50 to 0 m3s-1. The total simulation time is 5 hours. The area is drained 
by a weir located in the opposite corner with respect to incoming discharge. As for case 1, the 
model results depend on time resolution if the time step is larger than a certain value (1s in 
this case), however with such values a limited number of iterations for each time step is 
needed (around 4-5 iterations for the non-linear scheme and 2-3 for Jacobi method), therefore 
computational time is still acceptable (≈4min on a computer with a 1.86 Ghz processor and 
2Gb RAM). The graphics in Figure 2 show two computed water stages with a time step of 1s. 
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Figure 1. Case 1: comparison between flow profiles computed by IFD-GGA and HEC-RAS models. 

Figure 2. Case 2: water stages computed by IFD-GGA model after 10 min. (left) and 30 min. (right) from 
simulation start. Discharge enters from the upper left corner, while the outlet is located in the lower right corner. 

4 CONCLUSIONS 
The present work describes an implicit 2D parabolic flood inundation approach, based on 

an integrated finite difference scheme. The resulting non-linear system of equations is 
linearised using the Linear Theory approach to improve convergence, while the resulting 
linear system is then solved by means of the Jacobi iterative approach, which can be 
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massively parallelized. The resulting model was tested on a number of numerical cases, 
offering a good compromise between computational speed and accurate reproduction of the 
flood event. Although the reliability of using the Jacobi approach needs to be carefully 
verified over a wide variety of problems, the first results are quite interesting and full of future 
potentialities. Next work will focus on presenting the results of the IFD-LT model in real 
world applications, and on realizing a parallelized version of the model. 
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