
XVIII International Conference on Water Resources 
CMWR 2010 

J. Carrera (Ed) 
CIMNE, Barcelona 2010 

 

A PERTURBATIVE METHOD FOR DOUBLE-LAYER SHALLOW 
WATER EQUATIONS  

Michele La Rocca*, Allen B. Pinzon† 
* Università degli Studi RomaTRE 

Dipartimento di Scienze dell’Ingegneria Civile 
Via Vito Volterra 62 – 00146 Roma, Italia 

e-mail: larocca@uniroma3.it, web page: http//www.uniroma3.it 
 

† Universitat Politècnica de Catalunya (UPC) 
Departament d’Enginyeria Hidraulica Maritima i Ambiental,  

Campus Diagonal Nord. Edifici D1. C. Jordi Girona, 1-3. 08034 Barcelona 
e-mail: allen.bateman@upc.edu, web page: http://www.gits.ws 

 

Key words: Gravity currents, perturbative expansions, finite volume method 

 
Summary. A double-layer formulation for 3D gravity currents is proposed in this paper. This 
formulation is obtained starting from the shallow water equations for two layers of immiscible 
liquids, with different densities and thicknesses, and then imposing the rigid-lid condition. As 
a consequence a non vanishing pressure ps arises on the free surface of the upper layer and 
must be determined by solving a Poisson equation, together with momentum and mass 
balance equations. By means of a perturbative expansion of the field variables, the 
formulation of the problem is suitably simplified. The comparisons between numerical and 
experimental results are encouraging and show that numerical results are consistent with the 
experiments. 
 
1 INTRODUCTION 

Gravity currents are flows caused by density differences, both as the result of natural 
processes and of human activities. The book1 and the recent review2 provide a large variety of 
gravity current examples and an interesting synthesis of the main results that have been 
obtained on different types of gravity currents, while the book3 gives an exhaustive review of 
their mathematical treatment. There is a huge sort of gravity currents. In this work we limit 
our interest to those consisting of two layers of immiscible liquids, with densities ρ1, ρ2 
(ρ1>ρ2) and thicknesses h1, h2. The lower layer, consisting of heavier liquid, is separated from 
the upper layer, consisting of lighter liquid, by a separation surface and the upper layer is 
limited by a free surface.  

Actual gravity currents are mostly 3D, nevertheless they have not been investigated to the 
same extent as 2D and axisymmetric ones. Recent examples are represented by4, 5, 6. In the 
paper4 the authors investigated a 3D gravity currents evolving on a uniform slope. This 
investigation was performed both experimentally and theoretically, by means of a box model. 
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A different box model was used in5 to model the dynamics of a 3D gravity current, realized 
by means of a full-depth, lock-exchange release experiment. In6 the same 3D gravity current 
of5 was modeled by means of a single-layer, shallow water model, handled numerically with a 
finite-volume Godunov formulation7 together with the use of the approximate Riemann solver 
of Roe8.  

The shallow water equations can be considered a good tool for the investigation of gravity 
currents9. On the contrary, the adoption of a single-layer formulation, obtained in the limit for 
h1+h2→∞, h1/(h1+h2)→0, could be considered questionable when the orders of magnitude of 
h1, h2 are the same. The single-layer model should be applied when the values of h2 are much 
larger than those of h1, as in10, 11, but it is also successfully applied when the orders of 
magnitude of h1, h2 are the same. Indeed, although in12 are shown some weaknesses of the 
single-layer model in predicting the slumping behavior of 2D gravity currents, the works13, 14 
show how the single-layer model is a versatile tool for the prediction of thickness and velocity 
of 2D and axisymmetric gravity currents even for finite values of H (H=h1+h2) and for a wide 

range of the density ratios 
1

2

ρ
ρ . 

In6 the validity of the single-layer model has been shown for 3D gravity currents too. 
Nevertheless when gravity currents have O(1) values of the ratio h1/H, the motion of the 
upper layer is not negligible with respect to that of the lower layer. In this case, a double-layer 
formulation would be needed for modeling the motion of the upper layer. For 2D and 
axisymmetric gravity currents, the double-layer model has been applied successfully and its 
ability in reproducing correctly all of the phases of the gravity currents evolution has been 
shown in12. For 3D gravity currents, according to the authors’ knowledge, the work is still in 
progress. So, the aim of this paper is to present some preliminary results concerned with the 
application of the shallow water, double-layer formulation to 3D gravity currents. 

It is well known that such a formulation entails the definition of 4 partial differential 
equations, for 2D and axisymmetric gravity currents, and 6 partial differential equations for 
3D gravity currents15. Anyway, imposing the rigid-lid condition (i.e. the free surface remains 
perfectly flat during the motion: H=h1+h2=cost) the number of equations decreases, because 
the evolution equation for the upper layer thickness is substituted by the algebraic relation: H-
h1=h2. The disadvantage is that a non vanishing, unknown pressure distribution ps must be 
considered on the free surface. But, unlike for 2D and axisymmetric gravity currents12, 16, this 
pressure cannot be eliminated from the equations of motions and has to be determined solving 
them. 

In this paper a computational strategy is proposed in order to solve such a problem. It is 
based on the fact that, as a consequence of the rigid-lid constraint, a Poisson equation is 
obtained for the pressure distribution ps. This equation must be solved together with the 
equations of motion. However, by means of a suitable scaling and a perturbative expansion of 
the variables, the solution of the problem can be simplified.  

The structure of the paper is as follows: first the mathematical model is formulated. 
Second, the computational strategy, aimed to determine the pressure distribution ps on the free 
surface and to solve the equations of motion is defined. Third, a suitable scaling of the 
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variables and a perturbative expansion are introduced in order to simplify the mathematical 
formulation. Fourth, some preliminary numerical results are compared with experiments 
realized with the experimental setup described in6 and discussed. 

The comparisons are found encouraging. Future work is addressed to a systematic 
validation of the mathematical model.  

2 THE MATHEMATICAL MODEL 

Consider two layers of incompressible, immiscible liquids, heights h1, h2, densities ρ1, ρ2 
(ρ1>ρ2), evolving in a domain with  horizontal characteristic dimension L. Assuming that the 
parameter σ (defined as: σ=H/L) is small (σ<<1), it is possible to show15 that the hydrostatic 
pressure distribution is obtained from the vertical component of the momentum equation of 
each layer, at the leading order, having adopted σ as the small parameter of a perturbative 
expansion. Then, assuming that the pressure value on the free surface (z=H=h1+h2) is equal 
to sp , the pressure distributions within the two layers are given by:  

( ) ( )zhhgppghzhgpp ss −++=+−+= 212222111 , ρρρ  (1)

Substituting the pressure distributions (1) in the horizontal components of the momentum 
equation of each layer, averaging them with respect to the vertical coordinate, and accounting 
for suitable kinematic conditions resulting from the immiscibility hypothesis (not reported for 
the sake of simplicity), the following double-layer model is obtained15 : 
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(2)

where p1, q1, p2, q2 are the volumetric fluxes per unit length, along x and y directions 
respectively, defined as the product of the vertically average velocity components (u1, v1, u2, 
v2) by the correspondent layer’s height ( 21 h,h ). Interfacial stresses are neglected and the 
bottom stress 

0

1

=zxzT ,
0=zyzT  are calculated by means of a friction coefficient, as in6. The 

pressure sp is equal to zero if the upper layer is limited by a free surface, as usual. In this case 
the components of the gradient of the pressure sp disappear from equations (2).  

Consider the sum of first and fourth equation (2):                                                   
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and assume that H is constant with respect to both time and space. It follows from (3) that:                              

( ) ( ) 02121 =+
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x
 (4)

i.e. that the vectorial field ( )2111 , qqpp ++≡V  is divergence-free. Moreover, the evolutive 
equation for h2 can be discarded and substituted by the algebraic relation: 21 hhH += . The 
number of equations of the partial differential system (2) is so reduced by one. The reduced 
partial differential system is defined straightforwardly and is not reported for the sake of 
simplicity. The main disadvantage is represented by the fact that the pressure sp  on the free 
surface, being forced to remain flat, is no longer zero but becomes an unknown of the 
problem and must be determined together with the equations of motion.  

The equation for sp  is obtained from equations (2) as follows. First, (neglecting bottom 
stresses for the sake of simplicity) consider the sum of second and fifth equation (2) and third 
and sixth equation (2):                                                       

y
pahg

h
q

h
q

yh
qp

h
qp

xt
V

x
p

a
h

qp
h
qp

y
hg

h
p

h
p

xt
U

s

s

∂
∂

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+
∂
∂

∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∂
∂

+
∂
∂

2
'

2
'

2
1

2

2
2

1

2
1

2

22

1

11

2

22

1

11
2
1

2

2
2

1

2
1

 

(5)

being:
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x, second equation (5) with respect to y and sum them. Third, invoking the divergence-free 
condition (4), the following Poisson equation is obtained for sp : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂
∂

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

∂
∂

y
p

a
yx

p
a

x
hg

h
q

h
q

yh
qp

h
qp

xy
hg

h
p

h
p

x
ss

2
'2

2
'

2
1

2

2
2

1

2
1

2

2

2

22

1

11
22

1

2

2
2

1

2
1

2

2
 (6)

Solving together the reduced partial differential system and the equation (6) the 
unknowns spqpqph ,,,,, 22111 can be determined. Initial and boundary conditions are determined 
by the motion condition under consideration.  

3 SCALING AND PERTURBATIVE EXPANSIONS OF THE VARIABLES 
Consider the following scaling of the variables:                                                              
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where h is the order of magnitude of the lower layer thickness, L is the order of magnitude of 
a characteristic horizontal dimension, fa is the bottom friction coefficient and ρ is defined as 
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the mean value of ρ1, ρ2: ( ) 221 ρρρ += . The ratio h/H is assumed to be small enough 
(h/H<1) and defined as: ε= h/H. 

The reduced partial differential system assumes the following dimensionless form (for 
simplicity of notation tilde is omitted from dimensionless quantities):                                                              
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The adopted scaling gives a consistent result in the limit ε→0. In this case, as for 2D and 
axisymmetric gravity currents12, the terms containing the pressure sp vanish and the 
differential system (8) tends to the single-layer differential system.  

Assume the following first-order, perturbative expansions:                                                                            
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and substitute them into the differential system (8). This latter is split into an ε0 order partial 
differential system, coinciding with the single-layer partial differential system6 and governing 
the evolution of the ε0 order quantities: 0
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system, containing the pressure sp and governing the evolution of the ε1 order quantities: 
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partial differential system, it is necessary to know the ε0 order quantities: 0
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the pressure sp . This latter is obtained solving equation (6), scaled according to (7) and 
accounting for the expansions (9). At the leading order and considering Boussinesq’s gravity 

currents (
1

2

ρ
ρ ≈1), equation (6) becomes:                                                 
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The ε0 order partial differential system, the Poisson equation (10) for the pressure and the 
ε1 order partial differential system are solved sequentially. The complete solution is then 
expressed by (9).  
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4 RESULTS 

The ε0 order partial differential system, the Poisson equation (9) for the pressure and the ε1 
order partial differential system are solved by means of the finite volume method described 
in6, the standard SOR method and the Lax Wendroff methods respectively. Numerical 
simulations are aimed to reproduce gravity currents realized with the experimental setup 
described in6. It is a full-depth, lock-exchange release experiment realized with two identical 
volumes of liquid, (square section parallelepipeds, height H, side L=1 m), densities  ρ1 (salty 
water), ρ2 (fresh water ρ2≈1000 kg/mc), separated by a lock with a width b (b=0.2 m). As 
soon as the lock is manually lifted, the gravity current starts its motion. In figure 1, the top 
view of an experimental gravity current is shown: it has the typical mushroom like-shape 
described in6. The complex structure of the lobe and cleft’s instability1 is clearly visible along 
the contour of the expanding front, while, although not distinguishable in figure 1, a complex 
vortex, similar to that described in17 for axisymmetric gravity currents, has been observed. 

A quantitative comparison between numerical and experimental data is shown in figure 
2a,b. It shows (figure 2a) the dimensionless position of the front xf* along x axis (xf*= xf/L) 
(see figure 1) versus dimensionless time t* ( Lhgtt '* = ) and the top view of the gravity 
current at different instants of time (figure 2b). 

 
Figure 1. Top view of an experimental 3D gravity current. H=0.1 m, ρ1=1018 kg/mc, ρ2=1000 kg/mc, 9 s after 

the start of the experiment. b=0.2 m, L=1 m. 

Plots in figure 2b are made with dimensional quantities. Data in figure 2a have been 
obtained with: H=0.2 m,  ρ1=1018 kg/mc, ρ1=1033 kg/mc, es=0 mm, es=3 mm. es is the 
bottom roughness (see the work6) 
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Figure 2a. Dimensionless front position versus dimensionless time. Figure 2b. Top view of profile of the 

gravity current’s front. H=0.2 m, ρ1=1032 kg/mc, ρ2=1000 kg/mc. 

In figure 2a, the results relative to different densities and same roughness condition collapse 
on the same curve. The two curves separate from each other when the roughness, i.e. the 
bottom friction, starts to affect the motion. Experimental and numerical data are in fairly good 
agreement. 

 
Figure 3. Velocity fields of the gravity current (a) and the upper layer (b). H=0.15 m, , ρ1=1018 kg/mc, 

ρ2=1000 kg/mc. 6 s after the start of the run. 

In figure 3 the numerical velocity fields of the upper and the lower layer are plotted. 
Although no experimental results have been obtained for the velocity fields, the numerical 
results appear qualitatively consistent with the experimental observations. 

5 CONCLUSIONS 

A double-layer model for 3D gravity currents has been proposed in this paper. By means of 
a suitable scaling and a perturbative expansion of the variables, the problem has been split 
into three sub-problems which have to be solved sequentially. Results are encouraging, 
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although the method needs an exhaustive validation, which will be matter for future work. 
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