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Summary. In this paper a ppT -formulation for non-isothermal multi-phase flow is given
including diffusion and latent heat effects. Temperature and pressure dependencies of
governing parameters are considered, in particular surface tension variation on phase
interfaces along with temperature changes. A weak formulation of the governing equations
is obtained by applying Galerkin’s method of weighted residuals. The numerical model is
implemented in the framework of the open source scientific software OpenGeoSys based
on object-oriented programming (OOP) principles allowing model applications in various
geotechnical areas. The classic benchmark for two-phase flow by McWhorter and Sunada1

is used as a reference case on which non-isothermal effects and non-linear material behavior
are studied.

1 INTRODUCTION

Numerical simulation of fluid flow and heat transport processes in the multi-phase flow
model is conducted in various fields of practical applications. In many occasions, multi-
phase/ multi-component processes are strongly affected by non-isothermal processes. In
particular, when temperature is high enough in the domain of fluid flow, several non-linear
physical phenomena need to take into account in the simulation. Such phenomena are
vaporization, diffusion and capillary effects. Capillary effect due to interface curvature
inside pores is induced by surface tension that alters the equilibrium between liquid water
and water vapor. But this tension force is very sensitive to temperature and need to
incorporate its variation with temperature. Normally liquid phase flow is very slow intact
with a low permeable host medium. However even in such environments water vapor
flow can develop due to a high thermal gradient present, therefore it is important to
consider non-isothermal effects in those geological environments. It has several practical
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applications such as groundwater remediation, geothermal energy or waste isolation. For
instance, nuclear waste repositories in the deep to the earth are influenced by several
interfering physical processes.

A general formulation for fluid flow and heat transport through a partially saturated
porous medium is needed in order to show the clear picture of phase transitions by vapor-
ization. In this sequence Baggio et al.2 and Sanavia et al.3 has presented various types of
governing partial differential equation for non-isothermal effects on multi-phase flow with
their physical meaning. They emphasized on necessity of the heat source for vaporization
and mention that through Kelvin equation it is possible to define a simple relation for
water saturation, which is depending on capillary pressure and temperature. Numeri-
cal and experimental analysis of the hydro-thermal behavior of concrete with deydration
process at high temperatures is presented by Gawin et al.4 and Pont and Ehrlacher5. A
simple test problem was solved by Krejci6 in order to show the difference between linear
and non-linear solution at high temperature. Basu et al.7 examined multi-phase flow of
gaseous methane and liquid water during the drainage of methane from a coal seam in
mining operations which has some considerable significance for mine safety with regard to
explosion. Olivella and Gens8 presented vaporization of liquid water in unsaturated soil
subjected to temperature gradients with capillary effect. They also made a distinction
between the geothermal reservoir and the non-isothermal unsaturated soil approaches.
Benet and Jouanna9 derived a phenomenological relation for phase change of liquid water
in the porous medium when water vapor pressure is different from saturated water vapor
pressure. Theoretical and experimental analysis has been conducted by Ruiz and Benet10

on phase change of a volatile liquid in unsaturated soil. They provided an expression for
rate of phase change of liquid water present in the pores of solid skeleton.

Modeling of fluid flow and heat transport through undeformable (rigid) porous media
has been presented in this study. Here pore of solid skeleton is filled with compressible fluid
phase (dry air and water vapor). We have considered mass balance equation for each fluid
phase and an energy balance equation. It is more convenient to separate water vapor and
dry air masses in order to formulate mass balance equation for each phase. Sum of liquid
water and water vapor masses represents liquid phase mass balance equation and dry air
mass for gas phase mass balance equation. With this we developed a ppT formulation
to describe the full system. Here, state of the porous medium is described by capillary
pressure pc, gas pressure pg and temperature T .

2 NUMERICAL EXAMPLE

In the recent numerical study simulation has been performed about displacement pro-
cess in the horizontal column. We assume that horizontal column is a partially saturated
porous medium, initially the pores of the solid skeleton are filled with binary mixture of
dry air and water vapor at temperature equal to 353.15 K. We solve the problem in one-
dimensional domain with 260 linear finite elements up to the time duration 7.0 × 103 s.
The non-linear iteration is restricted with maximum of 25 iterations.
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Under isothermal condition McWhorter and Sunada1 have presented a quasi-analytical
solution for displacement of oil by water in a one-dimensional horizontal column. In order
to verify the present numerical method we selected this problem as a benchmark test.
In the benchmark, displaced and displacing fluids have common density and viscosity,
i.e. density equal to 1.0 × 103 kg m−3 and viscosity equal to 1.0 × 10−3 Pa s. Material
parameters of the porous medium are presented in Table 1. We conducted a simulation on
identical setup as in the McWhorter’s problem and found that present water saturation is
matching well with those of quasi-analytical solution. In Fig. 1 we show the comparison
of water saturation profile for 7.0 × 103 s and we found that present water saturation is
in close agreement.

Table 1: Material parameters of solid phase used in the computations.

Meaning Symbol Value/ Ref. Unit
Density ρs 2.0 × 103 kg m−3

Heat capacity cs
p 1.091 × 103 J kg−1 K−1

Thermal conductivity κs 0.42 W m−1 K−1

Entry pressure pd0 5.0 × 103 Pa
Absolute permeability k 1.0 × 10−10 m2

Total porosity φ 0.3 -
Water saturation Sl Eq. (1) -
Relative permeability krel Brooks Corey -

Water saturation is defined as extensive quantity per unit volume of pore space. In the
present study, water saturation Sl is depending on capillary pressure pc and temperature
T . Brooks and Corey11 present the relationship between water saturation and capillary
pressure. Baggio et al.2 mentioned that water saturation depends on temperature, and
can be estimated through Kelvin equation. From this information it is possible to solve
a simple differential equation in order to get the desired relation for water saturation.

Sl =

(
pdT0

pcT

)m

(1)

Here, T0 is the temperature at which water saturation Sl equals to one and m is the param-
eter related to the pore size distribution (small values represent single grain size material
and large one for highly non-uniform material) and hydraulic parameter pd referred as
entry pressure.

Entry pressure is the measure of capillary pressure regarding to the start of the dis-
placement. Surface tension σ on the phase interface induces a movement of fluids until a
local equilibrium is reached. This equilibrium depends on several physical quantities and
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temperature is one of them. Hence, it is possible to define a relation for entry pressure
varies with temperature. Since capillary pressure can be scaled with surface tension, so

pd = pd0

(
σ(T )

σ(T0)

)
, (2)

where, pd0 is assumed 5.0 × 103 Pa at temperature T0. Following correlation for surface
tension has been used in the present study

σ(T ) = 0.3258

(
1.0 − T

647.3 K

)1.256

− 0.148

(
1.0 − T

647.3 K

)2.256

. (3)

Hence, entry pressure is a decreasing function of the temperature.
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Figure 1: Water saturation Sl in the column from different conditions along with quasi-analytical solution
at time 7.0 × 103 s.

In Fig. 1 we have presented the water saturation profile in the column from different
cases/ conditions along with quasi-analytical solution at time 7.0×103 s. From the water
saturation profile it is possible to make some prediction about displacement, i.e. how
easily liquid water can move and how far it can reach in the column. Water saturation
curve corresponding to the case when displaced and displacing fluids have common density
and viscosity is included for reference, and it is close to quasi-analytical solution.

In many experimental studies it has found that a better displacement can be achieved
with use of higher entry pressure. We have shown effect of temperature dependent entry
pressure on pressure and temperature fields in Fig. 2. There we included curves corre-
sponding to the condition of zero enthalpy of vaporization, i.e. Δhvap = 0 and constant
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entry pressure, i.e. pd = pd0 along with fully nonisothemal case at time 7.0×103 s. Fig. 2c
show a significant difference in temperature profile corresponding to fully non-isothermal
and zero enthalpy of vaporization condition. Hence, it is important to consider heat trans-
port through latent heat of vaporization in the present study.
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Figure 2: (a) Capillary pressure pc; (b) liquid pressure pl; (c) temperature T emerging from fully non-
isothermal case (——); pd = pd0 (−−−); Δhvap = 0 (− · ·−) at time 7.0 × 103 s.

We have presented liquid water and gas phase densities in Figs. 3 for time 1.0×103, 4.0×
103 and 7.0× 103 s. Liquid water density is calculated by ρl

w = ρl
w(T0) (1 − βT (T − T0)),

here we used a temperature dependent thermal expansion coefficient βT (= − 1
ρl

w(T0)
∂ρl

w

∂T
).

Density of liquid water is measured by temperature and thermal expansion coefficient
(which itself increasing with temperature). On increment in temperature, liquid water
density is lowered by both quantities, i.e. temperature and thermal expansion coefficient.
Distribution of the gas density depends on gas pressure and temperature. And what we
have shown in Fig. 3b represents that at the left end gas density is maximum. A sharp
decrement has been observed while moving toward right end. Vapor mole-fraction xg

w is
used for the approximation of dynamic viscosity, heat capacity and thermal conductivity
for the gas phase.

Dynamic viscosity of the pure water depends on the temperature whereas binary mix-
ture of gas also dose on its composition in addition to the temperature. Unlike the vis-
cosity of pure water dry air viscosity is increasing with increase of temperature. However
increase in temperature results in development of water vapor. So at high temperature
gas phase is assumed a binary mixture of water vapor and dry air. The addition of water
vapor in the gas phase, forces gas viscosity to behave as a decreasing function of temper-
ature. Pruess12 and Hirschfelder et al.13 computed viscosity of binary mixture of water
vapor and dry air; whereas water vapor viscosity is according to IFC14.
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Figure 3: Density distribution of the liquid water and gas.

Gas viscosity μg shows the trend which is exactly the same as described by Pruess12, i.e.
it starts increasing with increase of temperature until gas phase has only dry air. As soon
as enough water vapor has been added into the gas phase it starts decreasing and asymp-
totically reaches to the viscosity value of water vapor and dry air mixture at 353.15 K, i. e
1.7402×10−5 Pa s. And liquid water viscosity μl shows that at left end where temperature
is 283.15 K liquid water viscosity has the maximum value then it start decreasing with
increase of temperature up to a certain distance beyond it becomes uniform.
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Figure 4: Resulting profile of viscosity for time 1.0 × 103, 4.0 × 103 and 7.0 × 103 s.
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3 CONCLUSIONS

In this paper a numerical non-isothermal multi-phase model has been developed for
the analysis of geotechnical problems. The following progress has been achieved in the
presented work.

• A ppT formulation of the governing equations for non-isothermal multi-phase flow
through a partially saturated porous medium has been developed, i.e. the chosen
primary variables are gas and capillary pressures as well as equilibrium temperature.
In comparison to commonly used pST formulations the ppT concept has advantages
in particular for the accuracy of the finite element method with no upwind technique.
Temperature effects have been included by means of the general Clausius-Clapeyron
equation of state for phase change. Densities of water vapor and dry air have been
calculated by ideal gas law. The variability of the complete material properties of
porous medium and fluids such as capillarity, relative permeability, mobility, density,
viscosity, heat capacity and thermal conductivity has been investigated in detail.

• We used a combined monolithic / staggered coupling scheme with automatic control
of time stepping, i.e. monolithic for the multi-phase flow and staggered for the heat
transport.

• We proved the importance of latent heat effects on vaporization by showing the
significant difference in temperature profiles when comparing with Δhvap = 0 (see
Fig. 2c).

• In a previous work Olivella and Gens8 estimated the entry pressure required to
initiate the desaturation process in an unsaturated porous medium. We further de-
veloped this scaling technique to investigate temperature dependent entry pressure
for fluid displacement. The entry pressure can be used to estimate temperature
effects on sorption equilibrium due to curvature of concave meniscus separating liq-
uid water and water vapor. We used this sorption equilibrium to study how the
water saturation changes with temperature. A new relation is presented which is
accounting to both temperature and capillary effects.

• The numerical scheme has been implemented in the framework of object-oriented
FEM and, therefore, allows an easy extension of the numerical non-isothermal multi-
phase model for multi-dimensional problems.
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