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Summary.

We study transport in a lattice fracture network with uncorrelated velocity fields using a
stochastic modeling approach. We consider a two-dimensional regular fracture network model
characterized by a constant fracture length and fracture angle. The transport velocity in the
fractures is a random variable. Here, we present an exact derivation of effective equations for
the average particle density and concentration variance from the microscopic disorder model.
Within a Lagrangian transport framework, we derive effective equations for particle transport by
coarse graining, noise averaging and ensemble averaging ofthe local scale Langevin equations.
We rigorously show that average particle density describeseffectively an uncoupled continu-
ous time random walk (CTRW) and the concentration variance is quantified by a two particle
CTRW. The obtained mean behavior and concentration varianceare compared to direct nu-
merical simulations of particle transport in single mediumrealizations and the corresponding
ensemble averages.

1 INTRODUCTION

Understanding flow through fractures is essential for improving several societal related is-
sues, including the risk assessment of nuclear waste disposal [1,2], the site selection and assess-
ment of leakage risk in geological CO2 storage [3], the oil andgas production from fractured
carbonates [4, 5], and the development of enhanced geothermal systems [6]. There are two
key obstacles to predicting transport through fractured media. The fundamental challenge is
that the location and properties of individual fractures are not identifiable. At best, only some
representative properties of the network can be inferred from analogue geologic outcrops or
high-resolution seismic interpretation [7, 8]. Second, itis well known that flow through frac-
tures leads to anomalous transport [9, 10]. Anomalous transport refers to the spreading of a
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substance or a signal in a way that deviates from classical diffusion and cannot be accurately
captured with traditional advection diffusion equation. Due to these reasons, predictive capabil-
ities related to real fractured and heterogeneous media areseverely limited. Anomalous trans-
port is not only limited to fluid flow. It is also observed in many other transport phenomena
such as heat and light diffusion [11], the distribution of human travel [12] and the occurrence
of earthquakes [13]. In this work, we develop a stochastic framework to understand and predict
anomalous transport through fractured media. We adopt a Lagrangian viewpoint to develop a
macroscopic (effective) description of transport in a simple fracture network model. Recently,
a Lagrangian framework was used to upscale unidirectional transport of an adsorbed solute in a
chemically heterogeneous medium [14]. In that work, it was shown that the transport through a
porous medium with constant hydraulic conductivity and spatially uncorrelated heterogeneous
retardation factor follows the CTRW framework. We will generalize the coarse graining and en-
semble averaging methodology to the simple 2D fracture network. We show that the transport
through a simple lattice fracture networks can be described, exactly, as a CTRW that is param-
eterized by the local scale medium properties and transportcharacteristics. We will develop an
Eulerian formulation by performing a Kramers-Moyal expansion [15] of the Master equation
and derive effective equations for the ensemble mean transport.

2 METHODOLOGY

2.1 Physical setting

We consider a simple fracture network model consisting of two sets of parallel, equidistant,
intersecting fractures: one set at an angle+α and the other at an angle−α with respect to
thex-axis, embedded in an impermeable matrix (see Fig. 1). The network is then viewed as
a regular lattice of nodes and links. The nodes are assumed tobe volumeless. The links of
the network have spatially-distributed properties. In ourfracture model, we assume constant
aperture for all links, and a spatially distributed retardation coefficientR. This implies that the
flow velocityu through the links of the network is constant, while the effective solute velocity
v (flow velocity divided by retardation factorv = u

R
) is spatially variable. In the case of mass

transport accompanied by linear sorption, the retardationfactorR is defined asR = 1+k, where
k is a dimensionless sorption coefficient. The network is random in the sense that the retardation
coefficient at each link of the network is drawn from a given statistical distribution. Numerous
studies at various scales and in different sites have shown that the distribution of many fracture
properties often follows a power-law. In nature the power laws have to be limited by the upper or
lower limits to the scale range over which they are valid [7].Therefore, we assumed a truncated
power-law distribution fork, pk = N 1

k1+β exp(−
1

k
), whereN is normalization factor andβ is

a parameter defining the slope of the power law (Fig. 1). We generate ensemble of the fracture
network realizations using samepk for each realization. The set of all realizations generatedin
this way form a statistical ensemble that is stationary and ergodic.

2



Peter K. Kang, Marco Dentz and Ruben Juanes

+α

l

P
rfe

e
fw

10
−2

10
0

10
2

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

1

1+β

P
ro
b
a
b
il
it
y
 d
e
n
s
it
y

k

Figure 1: A simple fracture network with the constant fracture length (l) and two sets of fracture orientation
{−α,+α} with respect to x-axis (left) and the truncated power law distribution of a dimensionless sorption coef-
ficient (k) with β = 1.5 (right)

2.2 Monte Carlo simulations

Solute transport through our lattice fracture system can bedescribed in terms of Lagrangian
equations. Letx(t) = [x(t), y(t)]T be the solute particle position at timet. Its evolution with
time t is given by

dx(t)

dt
= v[x(t)] cos{θ[x(t)]},

dy(t)

dt
= v[x(t)] sin{θ[x(t)]}, (1)

whereθ ∈ {−α,+α} is the fracture orientation andv is the particle velocity, which varies from
fracture to fracture. We rewrite this system of Langevin equations using a time parameterization
t(s):

dx(s)

ds
= cos{θ[x(s)]},

dy(s)

ds
= sin{θ[x(s)]}, (2a)

and

dt(s)

ds
=

1

v[x(s)]
, (2b)

where the random walkx(t) is parameterized in terms of a continuous variables, which has
a meaning of operational time: the processs(t) is a continuum analog of the number of steps
n(t).

The time evolution of solute particle takes place on a regular lattice with constant fracture
lengthl and fracture orientations{−α,+α}. At each joint, the particle can enter either of the
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two fractures with equal probability. Thus, the above set ofLangevin equations can be coarse
grained by setting∆s = l, which yields the discrete equations:

xn+1 = xn + l cos(α), yn+1 = yn + ξnl sin(α), (3a)

and

tn+1 = tn +
l

vn
, (3b)

whereξ ∈ {−1,+1} represents an equiprobability random processpξ =
1

2
δ(ξ+1)+ 1

2
δ(ξ−1),

assumed to be uncorrelated in time and space. We solve the transport problem by numerical
random walk simulations using (3), for many realizations ofthe random network. We assume
a point source at origin as an intial condition. In other words, all the particles are released
at x = 0, t = 0. The concentration is defined as number of particles at each node divided
by the total number of particles and the area represented by the joint. In each realization,
the transition time from node to node depends on the positionof the particle. The simulated
concentration field is highly variable from realization to realization due to differences in the
particle velocity field, as can be seen in Figure 2. We will show, however, that by averaging
over all possible realizations, the transition time becomes independent of particle position as
long as the underlying random field is statistically stationary.

2.3 Derivation of ensemble mean concentration

The particle distributionc(x, t) in a single realization is given by

c(x, t) = 〈δ {x− x[s(t)]}〉 , (4)

whereδ denotes the Dirac delta distribution, and the angular brackets denote white-noise aver-
age over many solute particles. The ensemble average of the particle distribution over realiza-
tions (i.e., the ensemble mean concentration) is given by

c̄(x, t) = 〈δ {x− x[s(t)]}〉, (5)

where the overbar denotes the ensemble average over realizations. If we assume point injection
as an initial condition, the probability of a particle beingat a certain position after a fixed
number of jumps is the same for all realizations because the topology of the fracture network
is fixed, and we assumed equal probability of jumping upward and downward at each joint.
Moreover, the particle position and transition time are independent after ensemble averaging
because the spatial distribution of the retardation factoris obtained from the same probability
distribution for all realizations. Using these facts we canprove that the ensemble space-time
transition probability density follows,

〈δ [(x− x
′)−∆x] δ [(t− t′)−∆t]〉 = η(x− x

′)ψ(t− t′), (6)
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Figure 2: Mean concentration obtained by numerical random work simulations over four different velocity fields.
Each velocity field was generated from the same probability density distribution and the result shows the large
variability of the mean concentration.
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whereη (x− x
′) ≡ 〈δ [(x− x

′)−∆x]〉 is the spatial transition probability density between
two adjacent nodes (x′ andx), andψ(t− t′) is the corresponding temporal transition (jumping-
time) probability density. In our fracture model, spatial transition probability density becomes
η(x−x

′) = δ[x− (x′+ lcosθ0)]
{

1

2
δ[y − (y′ + l sinα)] + 1

2
δ[y − (y′ − l sinα)]

}

, and the tem-
poral transition probability density becomesψ(t − t′) = 1

l
pk(

t−t′

l
− 1). Equation (6) is our

fundamental result: the transition distance probability and transition time probability are inde-
pendent, and each depends only on the distance between nodesand transition time. We conclude
that our lattice fracture model with heterogeneous sorption can be represented exactly by un-
correlated Continuous Time Random Walk (CTRW) model [15,16].
Using the transition distance probability and transition time probability, we showed in the Ap-
pendix that the ensemble mean concentration can be defined asfollowing.

c̄(x, t) =

∫ t

0

dt′

[

1−

∫ t−t′

0

dτψ(τ)

]

R(x, t′), (7a)

and

R(x, t) = P0(x, t) +

∫

Ω

dx′

∫ t

0

dt′η(x− x
′)ψ(t− t′)R(x′, t′), (7b)

wherePN(x, t) ≡ 〈δ(x− xN)δ(t− tN)〉 is the probability density of a particle arriving at
positionx at timet aftern steps, andR(x, t) ≡

∑∞

N=0
PN(x, t) is the probability density for

a particle to just arrive at positionx at time t. Accordingly,P0(x, t) = δ(x − 0)δ(t − 0) is
the space-time particle distribution after 0 steps, which denotes a pulse point injection of all
particles at the origin. If we introduce a median transitiontime t1, the transition velocityv = x̄

t1

and the dispersion tensorD = x
2

2t1
, the partial differential equation (PDE) form of (7) can be

obtained using Laplace transform and Taylor expansion [17].

sc̄∗(x, s) = δ(x− 0)− v · [∇c̄∗(x, s)]M∗(s) + D : [∇∇c̄∗(x, s)]M∗(s), (8)

where the star superscript (*) denotes the Laplace-transformed variable ands is the Laplace
variable. Laplace-transform of memory function(M∗(s)), the first moment ofη(x) (x̄) and the

second moment ofη(x)
(

x
2

)

are defined as,

M∗(s) =
st1ψ

∗(s)

1− ψ∗(s)
(9)

x̄ =

∫

dx′η(x′)x′
x
2 =

∫

dx′
x
′ ⊗ x

′η(x′). (10)
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Figure 3: Comparison of ensemble mean concentration obtained from Monte Carlo simulation over 10000 realiza-
tions and uncorrelated CTRW simulation (left) and Comparison of ensemble mean concentration of Monte Carlo
simulation over 10000 realizations and Analytical solution obtained by solving PDE form of CTRW equation.

For our fracture model,̄x = (x1, x2) = (lcosθ0, 0) andx2 =

(

x1x1 x1x2
x2x1 x2x2

)

=

(

(lcosθ0)
2 0

0 (lsinθ0)
2

)

which is showen in the Appendix. Now apply inverse Lapace transform to (8), and we can get

∂

∂t
c̄(x, t) = −

∫ t

0

M(t− t′) [v · ∇c̄(x, t′)− D : ∇∇c̄(x, t′)] dt′ (11)

We verified our results by comparing ensemble mean concentration obtained from three dif-
ferent methods.

1. Ensemble averaging of Monte Carlo particle tracking simulations over 10000 realizations
using the Langevin equation given in (3).

2. Uncorrelated CTRW particle tracking simulation with Langevin equation using uncorre-
lated space-time transition proability given in (6).

3. Solving (8) using inverse Laplace transform.

Figure 3 shows that all three methods provide almost identical ensemble mean concentration.
The plot on the left of Figure 3 shows that the uncorrelated CTRW particle tracking simula-
tion and the ensemble averaging of the Monte Carlo simulations are exactly identical. This
verifies that the transport through our fracture model follows uncorrelated CTRW. Moreover,
this is numerically significant result since this implies that we can obtain ensemble mean con-
centration with less computational expanse compared to ensemble averaging of Monte Carlo
simulations. The plot on the right of Figure 3 is almost identical, but we can notice slight differ-
ence of the plume front shape. This may be caused by numericalLaplace inversion. However,
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the difference is negligible and we can conclude that our effective equation (11) gives exact
solution. The developed model accurately captured anomalous transport and, most importantly,
the plume shape and the evolution are determined only by one parameter (β) which is the slope
of the power law region. As a result, this model is also highlyefficient for the parameter deter-
mination using inversion.

3 CONCLUSIONS

The significance of this work is that the macroscopic effective transport behavior has been
derived directly from the small scale fracture description. It turns out that such macroscopic
description takes the form of an uncorrelated CTRW. The description relies solely on the parti-
cle jumping time distribution, which depends -in our model-on a single parameter. The plume
shape and evolution was dictated byβ. However, it is important to note that the CTRW model
provides ensemble mean concentration which is not an exact mean concentration for a specific
realization. Therefore, information about variance between realizations is important for under-
standing variability. Ensemble mean together with variance will provide essential information
for the quantification of effective transport in fractured media. However, most physical systems
require the transport velocities to be correlated. Therefore, we will try to generalize our model
for the correlated velocity field for the future work. We conjecture that the effective transport
model may take the form of a correlated CTRW if the Lagrangian velocity is a spatial Markov
process [18]. We will try to apply our methodology to correlated velocity field and check the
applicability of correlated CTRW.
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