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Summary. All models aim to represent the reality of a process within the most incident 

variables as faithfully and easily as possible. In this order, it has developed a new genetic 

programming heuristic that contributes to find mathematical models that include the main 

variables and their relationships. This novel approach uses the average mutual information 

(AMI) as evaluation metric and incorporates Genetic Algorithms (GA) to find the optimal set 

of parameters. 

Two controlled experiments were made to assess the heuristic's behavior, they consisted in 

getting back to the Manning equation and Hallermeier equation from simulated data.  

Finally, it's shown how the algorithm achieves to recover the equations. 

 

1 INTRODUCTION 

If limitations of our senses and instrumental uncertainty of measurement, which has decreased 

thanks to new technologies, are ignored, the environment can be modeled and its behavior 

predicted to some degree of reliability. Models which could be used to this purpose can be 

classified into three main groups: physical models, analogue models and mathematical 

models, the latter being widely used due to their low cost and easy implementation in 

computers which let save time. The general structure of a mathematical model consists of 

inputs, parameters, one mathematical operator and outputs.  Inputs are analogous to the 

processes that trigger flows of matter, energy and information in the system; parameters 

represent, in some models, physical characteristics of the system; and the mathematical 

operator is responsible for converting inputs into outputs. 

One of the required steps that any genetic programming heuristic should address is the 

definition of one or more objective functions that are crucial in the processes of selection, 
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mutation and crossover. The objective functions are responsible for measuring the differences 

between observed values and those simulated by the model.  For this reason, minimization of 

these functions is used in the model calibration process
2
.  However, whereas in most models 

(based whether on neural networks,   autoregressive , etc), the objective functions are used 

only to determine the parameters of the model, in genetic programming they also play an 

important role in the construction of the mathematical operator, which has no predetermined 

structure. This is why it is considered that the selection of the objective function or functions 

to be implemented should be studied for this type of tools. 

In this sense, it is believed that the Average Mutual Information (AMI) of two random 

variables, which is a measure of the reduction of uncertainty of one of them from knowledge 

of the other, can highly contribute to the definition of mathematical operators and their 

parameterization, even though it does not have exactly the characteristics of a performance 

metric.  This paper compares the results obtained using the AMI for seven of the commonly 

used performance metrics, conducting a controlled experiment that seeks to rebuild the 

Manning equation and Hallemeier equation. 

This document is organized into six sections: the first is the introduction; the second 

presents a bref approach to genetic programming and genetic algorithms; the third, the seven 

objective functions and the AMI; in the fourth, the description of the developed genetic 

programming model; in the fifth, experimental design. Final remarks are presented in the sixth 

section. 

 

2 THEORETICAL FRAMEWORK  

2.1 An approach to genetic programming  

Genetic programming is a methodology framed within the familiar artificial intelligence 

systems and it is based on the evolutionary theory proposed by Charles Darwin (1838).  It 

consists in creating an initial population of equations or programs involving the possible 

variables that excite certain processes, which evolve from generation to generation according 

to principles such as reproduction, crossover and mutation
4
. Then, by introducing an objective 

function, the strongest individuals (equations) are selected to transfer a part of their genetic 

information to the next generation.  It is a cyclic sequence that perfects a mathematical 

operator that allows modeling a process more accurately. 

The product of this exercise is an operator that may describe the physical operation of the 

analyzed system.  

Therefore, genetic programming is able to solve the inverse problem of modeling in an 

automated and bio-inspired manner. 

 

2.2 Genetic algorithms  

Just as genetic programming, the genetic algorithms technique is one of the five classes of 

systems under the name of evolutionary algorithms.  Therefore, they maintain many 
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similarities in their functioning. Genetic algorithms have their beginnings in the seventies as a 

method of optimization.  They start out from a set of possible solutions to a specific problem, 

which are codified in character strings called chromosomes which are processed again and 

again through features that mimic natural selection, reproduction and mutation to find the best 

solution for the problem
3
.  

 The most significant difference between these two tools is that while genetic programming 

is responsible for finding the structure of the mathematical model, genetic algorithms are 

responsible for finding the parameters of the structure of a model previously established. 

3 OBJECTIVE FUNCTIONS AND AVERAGE MUTUAL INFORMATION  

3.1 Objective Functions  

In Table 1 the metrics used as objective functions are shown
1
.  

 
NAME DESCRIPTION EQUATION 

Mean Absolute 

Error  

This metric records in real units the level of 

overall agreement between the observed and 

modelled datasets. 

MAE = �
� ∑ �Q
 − Q� 
��
�  (1) 

Root Mean 

Squared Error  

This metric records in real units the level of 

overall agreement between the observed and 

modelled datasets 
RMSE = �∑ (Q��Q� �)�����

�      (2) 

Fourth Root Mean 

Quadrupled Error  

This metric records in real units the level of 

overall agreement between the observed and 

modelled datasets. 
R4MS4E = �∑ (Q��Q��)�����

�
�

     (3) 

Relative Absolute 

Error  

This metric comprises the total absolute error 

made relative to what the total absolute error 

would have been if forecast had simply been the 

mean of the observed values. 

RAE = ∑ |Q��Q� �|����
∑ |Q��Q����|����

          (4) 

Mean Absolute 

Relative Error  

This metric comprises the mean of the 

absolute error made relative to the observed 

record. It has also been termed “relative mean 

error”. 

MARE = �
� ∑ |Q��Q��|

Q�
�
�  (5) 

Median Absolute 

Percentage Error  

This metric comprises the median of the 

absolute error made relative to the observed 

record. 

MdAPE = Median %&Q��Q� �
Q�

&' ∗ 100  

(6) 

Mean Squared 

Relative Error  

This metric comprises the mean of the 

squared relative error in which relative error is 

error made relative to the observed record. 
MSRE = �

� ∑ %Q��Q� �
Q�

'+�
�          (7) 

Table 1: Evaluation metrics 

It has been reported that this objective functions are suitable to deals with the fact that 

some parameters might be uncorrelated in describing the behavior of the system, which is 

proven in controlled experiments. 
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3.2 Average Mutual Information (AMI) 

The Average Mutual Information between two random variables X� y X+ is an uncertainty 

reduction measure of  X� based on knowledge of  X+. It may be described as a measure of the 

amount of information that a random variable contains of another random variable
5
. This is 

defined by the following equation: 
 

I(X�, X+) = ∑ ∑ p(x�, x+) log 5(6�,6�)
5(6�)5(6�)6�∈X�6�∈X�            (8) 

 

Where: 

p(x�, x+)  = Joint probability of variables X� and X+ 

p(x�) = Marginal probability of variable X� 

p(x+) = Marginal probability of variable X+ 

 

One of the advantages of the AMI to be used as a metric is that it does not only identify 

linear correlations between two variables (Figure 1). For this reason, the developed tool uses 

AMI, normalized from 0 to 1, as a performance criterion to select the structures that best fit 

the data.   

 

 
 

Figure 1: Nonlinear correlation 

4 MODEL APPROACH 

The heuristic presented, which was implemented using a Matlab ® code, is presented in 

the Figure 2 and consists basically of the following steps: 

Initially data is read and then organized into a table, so that the first column corresponds to 

the output variable and the other columns correspond to the variables that could be part of the 

resulting equation.  Subsequently, using a set of operators, which in this case correspond to 

addition, subtraction, multiplication, division, exponential, natural logarithm and power 

function, the new variables are obtained, which are the result of applying the above functions 

to the input variables.  Given the functions that were incorporated into the program, in some 

cases these require two arguments and in some other, only one.  Finally, the resulting series 

are organized in three-dimensional arrays. 
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Figure 2: Model Structure 

To evaluate the performance of the new individuals, each of them is compared against the 

output variable through an evaluation metric, which can be selected within a set of eight 

options, which correspond to those in Table 1 plus the AMI.  The calculated values of said 

metric are incorporated into a table, in which are also stored the indices of the functions that 

produce values.  Likewise, the index of the time at which that individual was conceived is 

kept.  Subsequently, individuals are selected based on the values of the performance metric 

using the mechanism known as "Truncation Selection"
6
 which retains the best proportion of 

individuals and discards the rest.  

To get maximum performance from each of the individuals selected, they undergo a 

process through which the best exponents of each of the composing variables are identified. 

To accomplish this, the genetic algorithms technique is used. However, since the function to 

be optimized is defined by the user, the option to choose from one of the following eight 

metrics: MAE, RMSE, R4MS4E, RAE, MARE, MdAPE, MSRE or the squared correlation 

coefficient R
2
, was generated.  As can be seen, the first seven correspond to the same ones 

used to make the selection of individuals, while the last, which used to correspond to the 

AMI, was replaced by the squared correlation coefficient R
2
, because although the Average 

Mutual Information, as mentioned above, serves to identify non-linear correlations, in this 

case would not identify the appropriate exponents for each of the variables.  

Finally, selected and refined individuals through this method are incorporated as new 

variables for the next cycle.  The process ends when the critical value of the objective 

function has been got or when it meets a certain number of times has been reached. 

dataY X1 X2 X3 Functions Library Arrays of series Arrays of O.F.
+-x%eln̂ O.F. Tableep op o.f. row colBest O.F.ep op o.f. row colGA

table epoch iY X1X2X3 s1 s2 ....si ....sn
Combination of Variables

Truncation Selection
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5 EXPERIMENTAL DESIGN 

In order to test the algorithm and code capacity, and to determine the best objective 

function, it was attempted to recover the Manning equation, which is an empirical equation, 

resulting from the work of several researchers
8
.  It expresses the velocity versus hydraulic 

radius (R), the slope of the energy line (s) and a coefficient (n) representing the flow 

resistance when passing over certain area. 
 

v = �
� ∗ R+ :; ∗ s� +;                                   (9) 

 

This is a nonlinear equation with inconsistent dimension, however, is the most widely used 

equation in the calculation of uniform flow in channels, due to its simplicity.  

The procedure utilized to recover the equation involved the generation of random data sets 

of 1000 patterns, uniformly distributed in each of the independent variables, keeping the 

orders of magnitude characteristic of each of these (Table 2).  Later, from the equation 

uniform flow velocity was calculated for each of the records, thus obtaining series of equal 

length.  

 
                 Variable     

Statistic 

v n  R  s  

(m/s) (-) (m) (m/m) 

Mean 4.9817 0.0297 1.4886 0.0106 

Standard Deviation 3.8907 0.0115 0.8581 0.0055 

Minimum 0.0482 0.0100 0.0023 0.0010 

Maximum 25.4029 0.0500 2.9981 0.0200 

Count 1000 1000 1000 1000 

Table 2 : Manning equation variables statistics 

However, since the success of heuristics is subject largely to the randomness provided by 

genetic algorithms, 640 repetitions were performed, 80 for each of the eight objective 

functions, in order to assess the stability of the solutions depending on the metric used.  

Because of the necessity for an indicator of the stability of the solutions obtained from the 

different performance metrics, it was calculated the coefficient of variation of the 80 values 

for the eight cases analyzed.  Metrics with less variation in results were AMI and R4MS4E, 

the one which showed higher variability was MARE (Table 3). Additionally, regarding the 

structure of the obtained mathematical operators, the best results were obtained with AMI, 

because in these cases the structure of the found mathematical operator agreed with the 

Manning equation in 86% of the cases. 
 

ObjFun Mean Best Result Worst Result CV 

MAE 1.63 0.39 1.74 0.13 

RMSE 1.65 0.54 2.32 0.16 

R4MS4E 3.34 1.58 3.60 0.08 

RAE 0.56 0.12 0.60 0.17 
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ObjFun Mean Best Result Worst Result CV 

MARE 0.25 0.06 0.37 0.28 

MdAPE 25.49 15.60 28.76 0.09 

MSRE 0.21 0.06 0.23 0.11 

AMI-R
2
 0.84 0.95 0.72 0.08 

Table 3 : Coefficients of variation of the results according to each objective function 

To compare the best results obtained by different metrics, from each of the eight groups 

was selected the one that submitted the best value in terms of the respective performance 

metric.  Subsequently, they were compared with each other using the seven other metrics 

(Table 4). Likewise, scatter diagrams were plotted (Figure 3).  

 
         Metric 

ObjFun 
MAE RMSE R4MS4E RAE MARE MdAPE MSRE AMI 

MAE 0.3372 0.5589 1.1115 0.1176 0.0946 5.0543 0.0275 0.6885 

RMSE 0.6326 0.7725 1.0965 0.2206 0.1846 17.5168 0.0521 0.6680 

R4MS4E 1.0231 1.2095 1.4520 0.3567 0.5570 20.4468 3.1418 0.4848 

RAE 0.4043 0.5886 1.0120 0.1410 0.1158 6.9697 0.0356 0.7447 

MARE 0.1828 0.3036 0.6013 0.0637 0.0500 3.5051 0.0051 0.7539 

MdAPE 0.8465 1.2487 2.1110 0.2951 0.2788 13.3561 0.1898 0.6182 

MSRE 0.6680 0.9240 1.4930 0.2329 0.1603 14.6388 0.0392 0.5825 

AMI 0.2492 0.2860 0.3479 0.0869 0.0586 5.4920 0.0038 0.8708 

Table 4 : Comparison of objective functions 

The above analysis allowed determining that the best results in terms of model 

performance and stability of the generated solutions are presented when using the AMI as 

objective function for the selection of individuals and the squared correlation coefficient R
2
 

for the determination of the exponents. 

  

  

Figure 3: Comparison of evaluation metrics as objective functions 
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Finally, it was sought to reconstruct the Hallermeier equation
7
, using the AMI and the squared 

coefficient of correlation as objective functions for the selection of individuals and the 

refinement of the exponents of the equation respectively.  This equation allows calculating the 

settling velocity of a particle (Vs) in transitional flow, from the acceleration of gravity (g), 

specific weight (γ), particle diameter (d) and the kinematic viscosity of the fluid ( ν).  
 v= = (g>.@ ∗ γ>.@ ∗ d�.�)/ν>.D                           (10) 

 

As Manning equation experiment, random data sets of 1000 patterns were generated for the 

independent variables, the settling velocities values were obtained from Equation (10). Table 

5 shows Hallermeier equation variables statistics. The obtained equation (Equation 11), 

presents a mathematical operator of the same characteristics as the original equation and the 

exponents to which each of the variables are similar.  

 

                   
Variable  Statistic 

vs γγγγ    d νννν    

(cm/s) (Ton/m3) (mm) (cm2/s) 

Mean 34.3871 1.7053 0.0444 0.0126 

Standard Deviation 18.1050 0.0198 0.0216 0.0015 

Minimum 4.7136 1.6700 0.0080 0.0101 

Maximum 73.0507 1.7399 0.0829 0.0152 

Count 1000 1000 1000 1000 

Table 5 : Hallermeier equation variables statistics 

v= = (g>.@: ∗ γ>.EE ∗ d�.>F)/ν>.:G                           (11) 
6 FINAL REMARKS 

• The best results were obtained using the AMI as objective function for the selection of 

individuals and the squared correlation coefficient R
2
 for the determination of the 

exponents of the variables.  

•  Although AMI showed a good performance criterion in the two controlled 

experiments, it should be tested on other PG heuristics and equations of different 

structures.  

•  The reason for the AMI’s good performance criterion derives from its own definition: 

when it is assessing whether the observed and simulated data are similar, it does not 

only deals with the errors between the series, like most of the metrics, it also deals 

with the information gain of a variable with respect to another.  

•  Besides the experiments in this study, tests could be made with data measured in the 

laboratory or with synthetic data with incorporated noise to represent the instrumental 

uncertainty and the uncertainty of unmeasured variables that could contribute to the 

well functioning of the model and further assess the benefits of this new heuristic. 

• Further work about alternative formulations of a system model, when these are 

expressed in terms of partial differential equations, is part of a research. It is expected 

to be published elsewhere. 



Jaime A. Moreno, Eder G. Cárdenas and Nelson Obregón 

 9

REFERENCES 

[1] C. Dawson et al, “HydroTest: Aweb-based toolbox of evaluation metrics for the 

standardaised assessment of hydrological forecasts”, Environmental Modelling & 

Software, 22, 1034-1052 (2007). 

[2] P. Ogou et al, “Multi-objective global optimization for hydrologic models”, Journal of 

Hydrology, 204, 83-97 (1998). 

[3] R. Olarte, “Herramientas para la implementación de algoritmos genéticos en ingeniería 

civil con énfasis en hidroinformática”, Civil Engineer Thesis, Pontificia Universidad 

Javeriana (2003). 

[4] S. Liong et al, “Genetic programming: A New paradigm in rainfall runoff modeling”, 

Journal of the American Water Resources Association. Engng, 38, 3, 705-718 (2002). 

[5] T.M. Cover and J.A. Thomas, Elements of Information Theory, John Wiley & Sons, Inc., 

(2006). 

[6] V. Babovic and M. Keijzer, “Genetic programming as a model induction engine”, 

Journal of Hydroinformatics, 2.1, 35-59 (2000). 

[7] V. Babovic et al, “Generation of settling velocity equations for sand grains using genetic 

programming”, Hidroinformatics: proceedings of the 6
th

 international conference, 1631-

1638 (2004). 

[8] V.T. Chow, Hidráulica de canales abiertos, McGraw Hill, 1994. 


