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Summary. Determination of conductivities from measured or computed head-flow rate pairs 

is done by inverse modelling. Downscaling, in turn, is inverse modelling applied to determine 

fine-scale conductivities in coarse-scale grid blocks, in such a way that the boundary 

conditions arising from a coarse-scale model are honoured at the fine-scale. This way 

downscaling may be considered as a practical complement to upscaling, if conductivities at a 

coarse-scale level are obtained by upscaling or, in particular, by homogenization. 

We apply the Double Constraint method. This iterative method is based on the Electrical 

Impedance Tomography approach. The method is discussed and exemplified. Computational 

examples present applications to far-field downscaling. Finite elements are used as a 

discretization method. 

 

 

1 INTRODUCTION 

Inverse modelling applied to hydrogeological problems mostly deals with the 

determination of hydraulic conductivities based on measured or computed heads and flow 

rates
1, 2

. From the mathematical point of view, the problem of identification of the internal 

properties of an object from boundary measurements belongs to the class of ill-posed 

problems, which results in the need of regularization approaches
3, 4

 and in the development of 

other frameworks to handle the problem
5, 6

. 

The Double Constraint method is a relatively simple approach based on the Electrical 

Impedance Tomography concept
7
. Its main advantages are robustness and easy 

implementation, enabling to base computations on any standard flow code with some post-

processing added. We apply this approach to the downscaling problem. 

By downscaling we mean a special case of inverse modelling applied to determine fine-

scale conductivities in coarse-scale grid blocks in such a way that the boundary conditions 

arising from a coarse-scale model are honoured at the fine scale. This work is a continuation 

of ideas presented in
1, 8

, and at the same time may be viewed as a complement to
9
. Instead of 

regular heterogeneity patterns used in
8
, we base our computational experiments on randomly 

generated initial conductivity patterns. As opposed to applications aiming at detecting the 

shape of a body based on different conductivity properties
5,7,10

, our main interest is to 

determine a global heterogeneous field ensuring consistency of boundary conditions rather 
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than determining precisely the shape of an object. 

2 DOWNSCALING AS AN INVERSION PROBLEM  

Downscaling, if defined as an inverse to upscaling, may be viewed as a problem of 

substituting a homogeneous block with a fine-scale heterogeneous conductivity distribution in 

such a way that the boundary conditions coming from the coarse scale are satisfied. The fine-

scale conductivity may originate from our knowledge before upscaling, or may come from 

any assumptions about the heterogeneity pattern distribution
8
, or may be a randomly 

generated field meeting some statistical criteria.  

Two types of boundary conditions, both flux and piezometric head, are specified 

simultaneously on the block edges, what over specifies the problem in a way that either flux 

boundary conditions are satisfied, but heads boundary conditions are violated, or head 

boundary conditions are satisfied, but flux boundary conditions are violated. As a solution of 

the above contradiction we propose to modify the initial fine-scale conductivity field in such a 

way that both flux and head boundary conditions are satisfied. This way we come up with the 

following reconstruction problem: based on boundary data, find an approximation of the 

conductivity distribution in the interior of a domain Ω . For simplicity reasons only the 2D 

case will be considered. 

All considerations are based on the equation for incompressible and undeformable flow 

 0),( =ϕ∇⋅∇− yxk , (1) 

),( yxk - space-varying fine-scale conductivity, ϕ - piezometric head. Equation (1) may be 

equivalently written in a form of a continuity equation and Darcy’s law: 

 0=⋅∇ q , (2) 

ϕ∇−= ),( yxkq . 

Boundary conditions of two types are considered on Ω∂ : Dirichlet boundary conditions 

Φ=ϕ
Ω∂

, Φ  given function, or Neumann boundary conditions Ψ=
∂

φ∂
−

Ω∂n
k , Ψ given 

function.  

The presented approach is strictly linked to a numerical method applied in order to solve 

(1). All the computations are performed with the finite element method using linear basis 

functions defined over triangular meshes. 

2.1 Double Constraint Method 

The Double Constraint Method (DC) may be viewed as a direct successor of the Electrical 

Impedance Method
1, 7

. Assume that initial fine-scale conductivity pattern ),( yxk  is given in 

Ω  together with two independent sets of boundary conditions which are fluxes (Neumann-

type boundary condition) and heads (Dirichlet-type boundary condition) defined on Ω∂ . The 

DC method is an iterative method; in every step equation (1) is solved twice. In a forward run, 

denoted as run_F, it is solved with Neumann boundary conditions, with fluxes having 



Anna Trykozko  

 3 

components xkq
FF

x ∂ϕ∂−= /  and ykq FF

y ∂ϕ∂−= /  obtained as a solution. In the second 

forward run, denoted as run_H, Dirichlet boundary conditions are imposed and values of the 

components xh
HH

x ∂ϕ∂=  and yh
HH

y ∂ϕ∂= /  of the head gradients are computed.  

Taking into account fluxes ),( F

y

F

x

F
qq=q  and head gradients ),( H

y

H

x

H
hh=ϕ∇ , the 

residual HF
kR ϕ∇+= q  may be seen as a measure of the discrepancy between the solutions 

of run_F and run_H. Therefore, the aim is to minimize  

 ( ) ( ) Ω∇+⋅∇+= ∫
Ω

dkkR HHF ϕϕ qq .  (3) 

Here come the links to the numerical method used in order to solve (1). We apply linear 

elements, therefore the finite element formulation yields fluxes and gradients defined 

element-wise, which are moreover constant within elements. As a consequence, the integral 

over Ω  can be replaced with a summation of integrals over the elements (triangles) iΩ . 

( ) ( )∑ ∫ Ω∇+⋅∇+=
Ωi

i

HFHF
dkkR

i

ϕϕ qq . 

Conductivities ik are assumed constant in each element. Minimization of R by modifying 

ik requires ( ) 02/ =Ωϕ∇⋅ϕ∇+ϕ∇⋅=∂∂ ∫
Ω

i

HH

i

HF

i dkkR

i

q  for all elements iΩ . Since 

fluxes and gradients are constant within elements we have 

( ) 02/ =ϕ∇⋅ϕ∇+ϕ∇⋅=∂∂ i

HH

i

HF

i AkkR q ,  iA - element area. This results in the formula 

for the updated conductivity in each triangle, ( )HHHF

ik ϕ∇⋅ϕ∇ϕ∇⋅−= /q , which can also be 

written as the “update equation” 

 )/()(1 HHHFm

i

m

i kk ϕ∇⋅ϕ∇ϕ∇⋅ϕ∇=+ . (4) 

Iterations should result in modifications of the “old” conductivity ),( yxk m  to a “new” 

conductivity ),(1 yxk m+  such that mm
kk →+1  and the solutions of run_F and run_H come 

sufficiently close to each other.  

 

2.2 Example in 1D 

A 1D example is simple yet very instructive. Consider an interval consisting of n 

subintervals of lengths 1d , 2d , ..., nd . Two sets of boundary conditions are given: heads 1ϕ  

and nϕ , and fluxes 1q  and nq . Because of continuity we have qqq n ==1  all over the domain. 

Any arbitrary initial conductivity values, 0

1k , 0

2k , ..., 0

nk  are assigned to the appropriate 

subintervals; see Fig. 1. 

The solution of run_F of the DC method is immediate and yields fluxes qqF =  in all 
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subsections. The solution of run_H yields head gradients in subsections equal to 

0

1

00

1 /))/1(/()/)(( i

H
n

i

iiin

H

i kqdkk =⋅−=∇ ∑
=

ϕϕϕ . Therefore, the updated conductivities in the 

subsections are equal to HF

i

H

i

F

iii qqkkk // 001 =∇∇= ϕϕ . As a consequence, the ratio between 

the conductivities in any two subsections is preserved. In the 1D case the solution is obtained 

in one iteration. In the sense of honouring all the equations it is also true in 2D and 3D.  

1q , 1ϕ  mk1  mk2  ...     m

nk  nq , nϕ  

 →← 1d  →← 2d       →← nd   

Figure 1: Example in 1D 

2.3  2D problem: anisotropy  

Extending the considerations presented in Section 2.2, rather than using the equation (4) 

for computing new conductivities, we can apply the formulae  

 H

x

F

x

m

x

m

x hhkk /1 =+ ,   H

y

F

y

m

y

m

y hhkk /1 =+ . (5) 

As a consequence, even if the initial conductivities are scalar quantities, the modified 

conductivities may exhibit artificial anisotropy, which may be considered as a disadvantage. 

Artificial anisotropy may easily be eliminated by using (4) or by a “mixture rule”, for instance 
yx m

y

m

x

m
kkk

ββ= )()(  with 1=+ yx ββ . (If 2/1== yx ββ  this is referred to as square root 

isotropization.
1, 8

) Even if one of these isotropic formulas are used, controlling the ‘amount’ of 

anisotropy arising in consecutive iterations may prove useful as a termination criterion for 

iterations. The more the modified conductivity field is consistent with the two sets of 

boundary conditions, the less anisotropy appears in (5). 

It is possible to derive a variant of the DC method capable to obtain a fine-scale 

conductivity with given anisotropy ratio α=yx kk /  (for 1=α  the medium is isotropic).  

Extension of (4) is straightforward yielding )
~~

/()
~~

(1 HHHFm

y

m

y kk ϕ∇⋅ϕ∇ϕ∇⋅ϕ∇=+  with 

)/,/(
~

yx ∂ϕ∂∂ϕ∂α=ϕ∇ . Like (4), also (5) gives a good starting point to obtain a fine-scale 

conductivity with given anisotropy ratio α . Modified conductivities in elements with the 

specified anisotropy ratio are computed using the following mixture 

rule: yx m

y

m

x

m

y kkk
ββ+ α= )()/(1

, 
11 ++ α= m

y

m

x kk , where m

xk  and m

yk  come from (5). Anisotropy 

aspects will be the subject of our studies in the future.  

3 NUMERICAL EXPERIMENTS 

Computational examples were performed in 2D domains, meshed with triangles. The mesh 

consisted of 421 nodes and 800 elements. As an initial approximation of the fine-scale 

conductivity we used random conductivity fields, generated with the Matlab code
11

.  We 
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present results obtained for three fields, generated for the 2D exponential model
11

 with 

different values of variance; see Fig. 2. In all three cases the mean-log conductivity was set 

equal to 1. Parameters of the test fields are summarized in Table 1. Thus obtained fine-scale 

conductivities were mapped onto the computational mesh. 

Parameter Case 1 Case 2 Case 3 

variance 0,5 1 2 

correlation length in x and y 5 5 3 

minimal value of conductivity 3,0440E-1 5,7548E-2 8,4033E-3 

maximal value of conductivity 4,5435E+2 1,0712E+3 5,6651E+4 

Table 1: Summary of parameters used in computations 

 

 
Case 1 

 
Case 2 

 
Case 3 

Figure 2: Initial log-conductivity distribution 

3.1 Boundary conditions 

When applying downscaling, the boundary conditions are to be defined in an accordingly 

adjusted way. As compared to standard inverse problems, information coming from the 

boundary is less precise than in the case of direct measurements. 

At downscaling we consider one homogeneous grid block together with two sets of 

boundary conditions simultaneously defined, both of the Dirichlet and Neumann types. The 

boundary conditions originate from the solution computed by the coarse-scale model. As a 

consequence, all we have are the values of heads in the corners of the grid block and the 

values of fluxes through its edges. Specified in this way our boundary conditions do not 

reflect the heterogeneity we are going to reconstruct. 

In our procedure we ‘fill’ the so far homogeneous block with a heterogeneous, in our case 

randomly generated, conductivity pattern. In order to make the boundary conditions consistent 

with conductivities assumed at the fine scale, we modify the original coarse-scale boundary 

conditions and replace them with fine-scale boundary conditions.  

The fine-scale boundary conditions are such that the total inflow through all boundary 

(fine-scale) cells is equal to the inflow calculated by the coarse-scale model. If Q denotes the 

total flux through the block’s edge, then a flux iQ  related to a centre of a small-scale 

boundary edge is equal to iiiiii dkdkQQ ∑= / . In a similar way, the average of heads on 

boundary (fine-scale) cells is equal to the average head calculated by the coarse-scale model. 
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The total difference in heads ϕ∆  along a boundary edge of the block is distributed among 

fine-scale edges in the boundary inverse-proportionally to fine-scale conductivities in 

elements adjacent to the edge; that is, ))/1(/()/1( iiiiii dkdk ⋅⋅∑⋅⋅ϕ∆=ϕ∆ . 

For simplicity reasons in our computations we assigned a constant head equal zero on the 

western boundary of the block, and a constant head equal 4 on the eastern edge. As for the 

flux boundary conditions we assumed a uniform inflow flux from the western boundary and 

an equal uniform outflow flux through the eastern edge, with no-flow boundary conditions on 

the horizontal edges. The two sets of boundary conditions were consistent for a block with 

homogeneous conductivity equal to 10, which is in agreement with setting the mean-log 

conductivity equal to 1 while generating the test fields.  

3.2 Double Constraint Method – computational results 

Computations follow the steps described in Section 2.1.  Solutions obtained for the two sets 

of boundary conditions for initial conductivity distributions are plotted in Fig. 3. 

Conductivities were updated following (4), thus isotropy of conductivities was ensured. 

 

 
Case 1 

 
Case 2 

 
Case 3 

Figure 3: Isolines of heads computed for initial conductivities. Solid lines – solution with the flux boundary 

conditions. Dashed lines – solution of the Dirichlet problem. 

 

 
a) 

 
b) 

 
c) 

Figure 4: Case 1. a) Conductivities after 1st iteration, b) after 12th iteration, c) solutions after 12th iteration. 
 

Along with the modified conductivities we present the solutions obtained for two sets of 

boundary conditions. Fig. 4 gives results obtained for the Case_1. A good agreement is 
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obtained already after a very few iterations. As could be expected, in Case_2 and Case_3 

more iterations are needed; see Figs. 5 and 6. 

Because of the way the boundary conditions are defined at the fine scale, it was necessary to 

keep the conductivity values in elements adjacent to the boundary constant – otherwise the 

procedure may fail due to the strong relationship between the boundary conditions and the 

conductivities in the boundary elements. While computing new conductivities, following (4) 

or (5), care must be taken to avoid division by zero by special exception handling, for instance 

keeping conductivities in a given element unchanged. In order to avoid too high 

conductivities it is recommended to impose an upper limit. 
 

 
a) 

 
b) 

 
c) 

Figure 5: Case 2. a) Conductivities after 1st iteration, b) after 12th iteration, c) solutions after 12th iteration. 

 
a) 

 
b) 

 
c) 

Figure 6: Case 3. a) Conductivities after 1st iteration, b) after 12th iteration, c) solutions after 12th iteration. 

 Case 1 Case 2 Case 3 

after 1st iteration 1,026911 2,132962 2,030169 

after 4th iteration 0,968439 1,204608 1,753328 

after 12th iteration 0,996565 1,031892 1,098204 

Table 2:  Anisotropy ratio during iterations 

It is interesting to study the anisotropy ratios α  which were recorded during the iterations.  

In Table 2 we give values of anisotropy ratios averaged over mesh elements. As expected, the 

level of initial heterogeneity influences the convergence of the DC method. 
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4 CONCLUSIONS 

We defined a downscaling problem and presented the Double Constraint method, an 

efficient direct inversion method. The DC method is very robust and produces satisfactory 

solutions even in case of initial patterns with high contrasts in conductivities. It is relatively 

easy in implementation; if a general purpose flow solver is used then it is enough to extend it 

with an external loop of iterations. Moreover, it allows adding ad hoc modifications as well as 

the introduction of additional restrictions, for instance keeping conductivities in given 

elements unchanged, or imposing upper or lower limits to conductivity values. 

To increase the flexibility of the DC method it is considered to combine it as a 

“postprocessor” with the Constrained Back Projection method
9
. 
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