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Summary. Two-phase Navier-Stokes models are becoming increasingly popular for mod-
eling free-surface flows and hydrodynamic processes. They hold particular appeal for
problems where full vertical resolution is required in velocity and pressure, (e.g., short-
wave phenomena, flow around coastal structures and levees, and extreme erosion pro-
cesses). Level-set and volume-of-fluid formulations are the two most common approaches
for modeling two-phase flows and both can be used across many flow regimes. Both share
an advantage over front-tracking methods in that they are robust through changes in
connectivity of the phases such as during bubble formation and wave breaking.

However, standard level-set methods do not conserve mass. The conservation errors are
the result of describing interface dynamics using a level-set formulation and are not specific
to the discrete approximation. Since conservation errors accumulate to produce qualita-
tively incorrect solutions, several researchers have attempted to address this issue by using
hybrid level-set/volume-of-fluid and hybrid level-set/particle-tracking approaches. In this
work we present a method for correcting the level set in order to control mass conservation
error. The correction is defined as the solution of a nonlinear reaction-diffusion equation
and can be applied to higher order finite element methods on unstructured meshes. Nu-
merical results are presented for linear and quadratic approximations of incompressible
air/water flows.

1 INTRODUCTION

Traditionally, depth-integrated formulations have been preferred for modeling free-
surface hydrodynamics in the water resources community11,17. However, fully three-
dimensional air/water flow is an essential feature of many important phenomena like

1



C.E. Kees, M.W. Farthing, I. Akkerman and Y. Bazilevs

wave breaking, overtopping of coastal structures, rapid erosion processes, as well as wave/
current/vessel interaction. Depth-integrated models like the shallow water or Boussinesq
equations may be inadequate in these settings because they are unable to reproduce the
three-dimensional effects, phase interactions, and/or topological changes of the air/water
interface4,1. For this class of problems, two-phase models based on the full Navier-Stokes
equations have become increasingly popular9,8.

There are, in fact, a number of approaches capable of approximating the full three-
dimensional behavior of the two fluid system, including moving mesh methods, volume-
of-fluid methods, level-set methods, and particle methods (see for example20,16,15,13). The
approach developed here is based on level-set and volume-of-fluid methods because they
are robust through topological changes in the fluid distributions while still applicable for
high Reynolds number flow in large-scale, three-dimensional domains.

Level-set methods are our point of departure. Among other things, they deal well with
topological changes in the free surface, are easy to implement in two or three-dimensions,
and yield geometric information about interfaces directly16. However, unlike volume-of-
fluid methods, they are not strictly mass (or volume) conserving18. To be more concrete,
level-set methods describe the boundary between the two fluids implicitly as a zero level
set of a scalar function defined in the problem domain19. For two viscous fluids in a domain
Ω separated by a sharp interface Γ, the level-set description of the interface motion can
be written as

∂φ

∂t
+ u · ∇φ = 0 (1)

where u is the velocity, and Γ is defined implicitly by the zero level set of φ

Γ = {x | φ(x) = 0} (2)

This equation is derived based on kinematics at Γ and the (non-unique) extension of
the equation along Γ to all of Ω. Let one fluid have density ρa and occupy the domain
Ωa(t) = {x|φ(x, t) > 0}. The mass of the fluid is given by

Ma =

∫
Ωa(t)

ρadV =

∫
Ω

ρaH(φ)dV (3)

where H is the Heaviside function

H(φ) =


0 φ < 0
1/2 φ = 0
1 φ > 0

(4)

Note that H(φ(x, t)) is in this case the characteristic function of the set Ωa(t). Conser-
vation of mass over the time interval [tn, tn+1] is then∫

Ω

ρaH(φn+1)dV −
∫

Ω

ρaH(φn)dV +

∫ tn+1

tn

∫
∂Ω

ρaH(φ)u · ndSdt = 0 (5)
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Unfortunately, discrete solutions of eqn (1) do not necessarily satisfy eqn (5). This con-
servation error can be minor for highly resolved simulations over moderate time scales.
However, coarse grid and/or long time simulations can lead to qualitatively incorrect re-
sults as the mass error accumulates to produce inaccurate fluid distributions, front speeds,
and predicted loads.

A number of techniques have been developed to address this shortcoming in level-set
methods. One approach is to improve the resolution of φ directly by solving eqn (1) to
very high accuracy using Eulerian-Lagrangian approximations like the particle level-set
method5 or high-order discontinuous Galerkin schemes10.

Other techniques introduce an explicit statement of mass conservation into the solution
algorithm. For divergence-free velocity fields, eqn (1) can be rewritten as

∂φ

∂t
+∇ · (φu) = 0 (6)

When approximated with a conservative discretization, this formulation conserves
∫

Ω
φdV .

If φ in fact approximates the Heaviside function, H, then the conserved quantity in
eqn (6) approximates the fluid volume of one of the phases12. With this approach the
approximate Heaviside function must be preserved in order to maintain the sharp interface
approximation. Since non-oscillatory numerical methods for eqn (6) smear the profile over
time, φ must be re-initialized by solving a nonlinear equation12.

Similarly, the local volume fraction over a grid cell or mesh element can be defined as
Ve =

∫
Ωe
H(φ)dV/|Ωe|. A conservation law for the volume fractions then follows directly

from eqn (5). While standard volume-of-fluid methods define Ve directly and conserve
mass discretely, interface reconstruction remains a challenge, particularly for higher order
and/or unstructured mesh approximations6. For this reason, techniques like the conserva-
tive level-set and volume-of-fluid (CLSVOF) approach combine a volume-of-fluid solution
for Ve with solution of eqn (1) for φ to determine interface normals in the interface recon-
struction process.

The hybrid method considered here also couples a level-set formulation with an (ap-
proximate) solution of eqn (5). The coupling is achieved via a correction, φ′, defined at
the time instant tn+1 as the solution of∫

Ω

w
[
H(φn+1 + φ′)− Ĥn+1

]
dV + ε

∫
Ω

∇w · ∇φ′dV = 0 ∀w ∈ W (Ω) (7)

where φn+1 is the approximate solution of eqn (1) at time tn+1, Ĥn+1 is the approximate
solution of eqn (5), and ε is a small parameter. Ideally, if the weighting space W is
suitably chosen we have ∫

Ω

[
H(φn+1 + φ′)− Ĥn+1

]
dV = 0 (8)
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and φ′ is in some sense a minimal, nearly constant perturbation of φn+1. The corrected
approximation for φ then not only recovers mass conservation but also preserves geometric
information like the signed distance property contained in φn+1.

While eqn (7) is nonlinear, the approach has several appealing features. It is suitable
for finite element approximations of arbitrary order and topology as well as isogeometric
or finite volume methods. Since it builds on basic level-set techniques, it can also be
used to supplement existing level-set implementations to enforce mass conservation when
necessary.

In the following, we formulate this approach for incompressible air/water flows and
summarize a discrete approximation based on variational multiscale finite element meth-
ods2. We then present numerical results to illustrate performance for linear and quadratic
approximations in two and three dimensions.

2 APPROACH

2.1 Continuous formulation

We begin with the standard level set formulation for incompressible two-fluid flow. Let
Ω be the problem domain with boundary ∂Ω, and φ be a level-set function that defines
the two fluid domains. As discussed above, the zero level set of φ can be used to define
the boundary between the two fluids through eqn (2) and its evolution is governed by eqn
(1). To be specific, the water and air domains are defined as

Ωw = {x | φ(x, t) > 0}, and Ωa = {x | φ(x, t) < 0}, (9)

respectively. We let ρw and µw, and ρa and µa, denote the density and dynamic viscosity
of water and air, respectively. Then, the density and viscosity of the two-fluid system are
given by

ρ = ρwH(φ) + ρa [1−H(φ)] , and µ = µwH(φ) + µa [1−H(φ)] , (10)

where H(φ) is given in eqn (4). In actual computations, H replaced by a regularized
version, Hε

Hε(φ) =


0 if φ ≤ −ε;
1
2

(
1 + φ

ε
+ 1

π
sin
(
φπ
ε

))
if |φ| < ε;

1 if φ ≥ ε.
(11)

Conservation of fluid momentum and mass is expressed via a variable-coefficient Navier-
Stokes system

∂(ρ(φ)u)

∂t
+∇ · (ρ(φ)u⊗ u) +∇p−∇ · 2µ(φ)∇su = ρ(φ)f in Ω (12)

∇ · u = 0 in Ω. (13)

where p is the fluid pressure, f is the body force per unit mass, and ∇s is the symmetric
spatial gradient.
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A minimal level-set formulation for two-phase incompressible flow consists of eqn (1),
eqns (9)–(10), eqn (12), and eqn (13) along with appropriate initial and boundary con-
ditions. Since they are based on a thin interface approximation, maintaining a sharp
transition region in φ is critical for the accuracy of level-set methods. For this reason,
level-set approaches typically include a “redistancing” step based on the solution of the
Eikonal equation, which determines a signed distance function to the fluid-fluid inter-
face16,13

‖∇φd‖ = 1, φd = 0 on Γ (14)

As mentioned in the introduction, to this we add the differential form of the mass
conservation equation for the volume fractions, eqn (5):

∂Ĥ

∂t
+∇ ·

(
Ĥu
)

= 0 (15)

where density has been eliminated using incompressibility. Finally, the volume fraction is
linked to the signed distance function with the nonlinear reaction-diffusion equation

ε∆φ′ = Hε(φd + φ′)− Ĥ
∇φ′ · n = 0 on ∂Ω, (16)

where n is the unit outward normal to the two-fluid domain boundary, denoted by ∂Ω,
and ε is a parameter that penalizes the deviation of φ′ from a global constant.

2.2 Numerical solution

To solve the system of equations that constitute the full mass-conservative approach,
we use a first order splitting in time. To advance from time level tn to tn+1 we proceed
with the following steps7

1. Solve eqns (9)–(13) with ρ(φn) and µ(φn) for un+1,

2. Solve eqns (1) and (15) with un+1 for φn+1
∗ and Ĥn+1

∗ ,

3. Solve eqn (14) with Γ defined by φn+1
∗ = 0 for φn+1

d , and

4. Solve eqn (16) with φn+1
d and Ĥn+1

∗ for φ′.

We then set

φn+1 = φ′ + φn+1
d , and Ĥn+1 = Hε

(
φ′ + φn+1

d

)
(17)

While this splitting decouples the full system, it still involves solution of several nonlinear
PDE’s that can be quite challenging in their own right. Our results here use residual-
based variational multiscale methods2. Nonlinear shock-capturing is used to stabilize
high Reynolds-number computations3, while time integration is performed using either
low-order variable coefficient backward difference formula (BDF) approximations or a
generalized-α method.
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3 Numerical Experiments

In the following, we consider two test problems to illustrate the behavior of our mass-
conservation approach and compare its performance with a more standard level-set ap-
proach including redistancing. The first example is a well-known benchmark problem for
interface propagation algorithms that tests both accuracy and conservation. The domain
is the unit square, and the velocity is prescribed as14

u = cos(
πt

8
) sin(2πy) sin2(πx), v = − cos(

πt

8
) sin(2πx) sin2(πy) (18)

The initial condition for the level set is a circle of radius 0.15 centered on (0.5, 0.75), and
the velocity field reverses in time to yield the initial conditions at the final time T = 8.
Solutions were computed using continuous piecewise linear (P1) and quadratic (P2) finite
element spaces on a series of refined grids starting with a base 21×21 node (L1) triangular
mesh. Absolute mass conservation errors for a standard P1 level set approximation with
redistancing (NC) and the mass conserving (MC) solutions are shown in Figure 1 (left),
while Figure 1 (right) shows the corresponding results for the P2 approximation. Note that
the P1 and P2 solutions were obtained using first and second order BDF approximations
in time.
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Figure 1: Vortex problem, absolute mass conservation errors for NC and MC methods. P1 (left) P2

(right)

For the second problem, the domain is a tank with dimensions 10m x 0.4m x 2m with
a water column banked initially in the right side of the tank in a region 5m x 0.4m x 1
m. The time interval is [0, 20s]. The density of water is set to ρw = 998.2kg/m3 and the
dynamic viscosity to µw = 0.001kg/(ms). The density of air is set to ρa = 1.205kg/m3

and the dynamic viscosity to µa = 0.0001kg/(ms). The fluid boundary conditions are no
flow with free slip everywhere except the top of the tank, where a constant atmospheric
pressure of zero is applied with transmission (outflow) boundary conditions. The time
history of the absolute mass conservation error is given in Figure 2 (left), while a snapshot
of the solution at t = 2.0 (s) is given in Figure 2 (right).
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Figure 2: Problem 2, P1 absolute mass conservation errors (left), free surface and velocity, t = 2.0 (right)
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