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Summary. A non-linear, multi-objective optimization method is presented that seeks to 
maximize free product recovery of light non-aqueous phase liquids (LNAPLs) while 
minimizing operation cost.  This approach combines FEHM (Finite Element Heat and Mass 
transfer code), a groundwater model that can simulate LNAPL transport in the subsurface, 
with two evolutionary algorithms: the genetic algorithm (GA) and the differential evolution 
(DE) algorithm. The proposed optimal free phase recovery algorithm is tested using data from 
a field site contaminated with LNAPLs, located near Athens, Greece. The results obtained 
using the two evolutionary algorithms (GA and DE) are presented and discussed. 

 
 
1 INTRODUCTION 

Numerous industrial sites worldwide have been contaminated by light non-aqueous phase 
liquids (LNAPLs) such as petroleum hydrocarbons (oil, gasoline, diesel etc) and organic 
solvents. LNAPL migration is a complex process that is affected by various parameters such 
as: gravity forces (vertical migration), capillary forces (horizontal spreading), aquifer 
heterogeneity, type of spill and the presence of fractures1. During the vertical migration of 
LNAPL some will remain behind, trapped in the vadose zone (residual saturation). When 
LNAPL reaches the capillary zone it accumulates, creating an oil table that rests directly 
above the water table, often causing a depression on the water table due to its weight2. Finally, 
some of the LNAPL partitions into the groundwater through dissolution causing long-term 
groundwater contamination1.  

Successful remediation of the contaminated sites can prove to be a costly and time 
consuming task. To this end, researchers have directed their efforts on developing tools that 
can improve the time-efficiency and cost-effectiveness of groundwater remediation strategies. 
Such tools are algorithms that couple groundwater contaminant transport simulation models 
with optimization techniques. Since LNAPL remediation process involves different tasks, 
such as cleanup of residual LNAPL phase, free-product recovery and removal of the dissolved 
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phase, various techniques have been developed to accomplish the optimization of each task. 
In recent years, most researchers focused on optimizing the removal of LNAPLs dissolved in 
groundwater using the pump and treat method that has been the most commonly used 
remediation strategy3-16. A number of studies were also devoted to optimizing bioremediation 
designs17-22. Others optimized different remediation techniques like bioslurping23, 
bioventing24 and soil vapor extraction (SVE) method25.  

There are a few studies that attempted to optimize free product recovery of LNAPLs. 
Specifically, Cooper et al. 26 presented a methodology for optimizing free product recovery 
from a single well that combines simulation, nonlinear regression and optimization (using 
MINOS), neglecting the economical aspects of the problem was proposed. Qin et al.27 also 
coupled numerical modeling, a multivariate regression method and a genetic algorithm to 
optimize a vacuum enhanced free product recovery (VFPR) process. Their method included 
environmental and economical effects and provided a means to analyze the tradeoffs between 
them. A related work by Qin et al.28 optimized a similar process namely the dual phase 
vacuum extraction (DPVE) using a multiphase flow simulator and cluster analysis in 
conjunction with a genetic algorithm to solve a multiobjective optimization problem. An 
extensive literature review of the recent developments associated with optimization 
techniques applied to site remediation is available by Mayer et al. 29 and Qin et al.30.  

As a continuation of the work performed previously, the focus of this paper is to develop a 
simulation-optimization model that couples a multiphase flow simulation model with two 
evolutionary algorithms: the genetic algorithm (GA) and the differential evolution (DE) 
algorithm, taking into account both the environmental and economical aspects of the 
remediation problem. More specifically, the goal is to achieve maximum LNAPL free product 
removal at least cost. The performance of the proposed optimal free phase recovery 
algorithms (GA and DE) is compared using data from a field site contaminated with LNAPLs, 
located near Athens, Greece.  

2 METHODOLOGY 

2.1 Multiphase flow simulator 
For the purpose of simulating the LNAPL transport in the subsurface, FEHM (Finite 

Element Heat and Mass transfer code), a model developed by the Los Alamos National 
Laboratory, was used. Its purpose is to simulate mass transfer for multiphase flow within 
porous and permeable media, and noncondensible gas flow within porous and permeable 
media31. In this work, isothermal NAPL-water transport was assumed. This assumption is 
generally valid for shallow subsurface transport, where pressure is practically constant and 
physicochemical properties are not affected significantly by temperature fluctuations32. The 
model uses a pressure formulation and solves two conservation equations; one for liquid (free 
phase) NAPL and one for liquid water: 
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The above equations are subject to the following initial conditions: 
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where l denotes liquids (l=w for water and l=n for NAPL), Sl are the liquid saturations, 
with Sw+Sn=1, ql(x, t) are the liquid fluxes, Fl(x, t) is a source or sink term, λl(x, t) is liquid 
mobility, Pl(x, t) is the fluid pressure, ρl is fluid density, k(x) is the intrinsic permeability of 
the porous media, krl is the water or NAPL relative permeability, μl is the liquid dynamic 
viscosity; Pl0(x) is the initial pressure in the domain, Plt(x, t) and Ql(x, t) are the prescribed 
pressure and fluid fluxes across boundary segments ΓA and ΓB, n(x) is the outward unit vector 
normal to the boundary ΓΒ and is the porosity32. The input to the model consists of an initial 
description of the fluid pressure as well as media properties. The output consists of the final 
fluid pressure and the volume fraction of water-NAPL31.  

φ

2.2 Optimization problem formulation 
The objective of the proposed optimization algorithm is twofold: maximizing the 

remediation efficiency (LNAPL free product removal) while minimizing operation cost. The 
well locations and number are assumed fixed, thus, the capital cost associated with their 
construction will not be included in the objective function. The length of the pumping period 
to ensure successful remediation is also assumed fixed. Consequently, the decision variables 
are the LNAPL pumping rates for each well. 

The first objective is associated with the economical aspect of the problem, in this case the 
pumping wells operation cost and the second objective involves the environmental 
considerations of the problem that in this work are represented by the maximization of free 
product removal or equivalently the minimization of the NAPL free phase product that 
remains in the aquifer after the end of the remediation period. This is measured by the 
LNAPL head at observation locations. The two objectives are combined into one objective 
function equation using weights whose selection depends on their relative importance: 
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where t is the remediation period, c1 is the unit cost of operation, n is the number of 
existing pumping wells, Qi the pumping rate of each well, Hi is the LNAPL head at each 
observation well, w1 and w2 are weights that define the relative importance of the two terms 
of the fitness function and w3 is an additional penalty term imposed whenever the second 
objective is less than or equal to a prespecified small value. 

2.2 Solution algorithms 

 Classical optimization algorithms are not convenient when dealing with multiobjective 
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problems. Evolutionary algorithms on the other hand, are highly effective in finding multiple 
solutions in a single simulation run due to their population based approach, making them an 
ideal choice when trying to solve such multiobjective problems33. Therefore, the optimization 
problem formulated above was solved using two evolutionary algorithms: the genetic 
algorithm (GA) and the differential evolution (DE) algorithm. Evolutionary algorithms are 
stochastic search methods inspired by natural biological evolution. A fixed size population of 
potential solutions is required to initialize the process. In most cases, the initial population is 
created randomly. The next step involves the evolution of the population using genetic 
operators such as crossover and mutation in order to find better solutions. The newly created 
population is then used in the next iteration (generation) of the algorithm until a stopping 
criterion terminates the process. The stopping criterion can be either in the form of maximum 
number of generations or a satisfactory fitness level. If the algorithm has terminated due to a 
maximum number of generations a satisfactory solution cannot be guaranteed30. 

The difference between genetic and differential evolution algorithms lies in the process of 
generating a new population. In GAs, during each iteration individuals from the previous 
population are selected using some selection scheme, and are combined (crossover) in order 
to form a new population. Some of those individuals will undergo mutation, which is a 
random change in one or more of their chromosomes. The number of individuals that will be 
combined and/or mutated is determined by the crossover and mutation probabilities 
respectively. The rest of the individuals will enter the new population unchanged34.   

  In DEs, new individuals are created by adding the weighted difference between two 
individuals to a third, called mutated vector (mutation). The mutated vector is combined with 
a randomly chosen individual of the population, called target vector, in order to produce a trial 
vector (crossover). Then, the fitness of the trial vector is compared to that of the target vector 
and if it is greater, the trial vector replaces the target vector in the next generation (selection). 
In each iteration, each of the individual has to serve once as the target vector35.  

Traditional genetic algorithms are binary coded. Nevertheless, when applied to real world 
problems, real-coded evolutionary algorithms have proved more computationally efficient and 
easier to implement36. For this reason, a real-coded genetic algorithm was used in this work. 

3 FIELD APPLICATION AND RESULTS 
The applicability of the proposed strategy and the relative effectiveness of the two 

evolutionary algorithms were demonstrated through a field application in an industrial area 
located near Athens, Greece. The environmental assessment performed at the site detected 
significant hydrocarbon contamination in all three phases (free phase product, soil vapor and 
groundwater solutes).  The main geological formation encountered in the area is limestone 
consisting of a fractured upper part that extends 1-6 m below the ground surface. This 
fractured part constitutes a confined aquifer which was vertically discretized in 2 numerical 
layers. The horizontal discretization of the study area was implemented using a quadrilateral 
finite element mesh consisting of 902 nodes and 832 elements. The initial hydraulic head 
distribution for each layer was obtained by interpolation of field measurements (corrected for 
the effect the floating oil product). The calibration of the flow field was also performed using 
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field measurements (Figure 1a).  
An initial hydrocarbon free phase distribution was created by interpolating existing 

LNAPL thickness field measurements (Figure 1b). There are 10 pumping wells on site. Those 
locations plus 10 other points serve as observation wells i.e. locations where LNAPL 
thickness needs to be minimized. The length of the remediation period was set to one year. 

 
Figure 1: a) Finite element mesh, boundary conditions and hydraulic head distribution, b) Initial LNAPL 

distribution and location of pumping (red circles) and monitoring (black circles) wells 

The hydraulic conductivity field of the model area is considered heterogeneous. The main 
model area has a hydraulic conductivity of -3102× m/s and additionally there exist three lenses 
with hydraulic conductivities of , -4101.3 × -4109.1 × and -4103.4 ×  m/s around wells M9, M10 
and P9 respectively and one with a value of -4101.1 × m/s north of well M10 that were 
determined using pumping tests. The porosity is 0.03, the hydrocarbon density and viscosity 
are 878.7 kg/m3 and  Pa·s and the residual liquid saturation is 0.05.   -41004.6 ×

As mentioned before, the optimization problem of this work was solved using a genetic 
algorithm and a differential evolution algorithm. For both algorithms a population of 30 
individuals was used in each generation and a maximum number of 500 iterations were 
defined as the stopping criteria in both cases. This corresponds to 15,000 calls to the 
simulation model. The weights used in this optimization problem were 0.01, 1 and 10 
respectively and were experimentally defined trying to make sure that the first two terms of 
the objective function have similar orders of magnitude. For the GA, the crossover (Pc) and 
mutation probabilities (Pm) were 0.8 and 0.1 respectively while for the DE, the crossover (Cr) 
and scaling parameters (F) were set to 0.8 and 0.5. These parameters were adjusted for 
optimal performance by the two algorithms, starting with initial values taken from the 
literature34,35. The optimization parameters and optimal solutions obtained from the two 
optimization methods are summarized in Tables 1 and 2. 

In Figure 2, the final LNAPL thickness distribution after implementing the optimal 
pumping strategy of the GA is presented. The LNAPL thickness is reduced to zero in all 10 
pumping wells. Regarding wells M1-M3 and M8-M10 the reduction in LNAPL thickness is 
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17.7%, 48%, 47.5%, 6.3%, 44.8% and 8.3%, respectively. For wells M4-M7, while the initial 
product thickness was relatively low, now it has been increased. This is due to the fact that 
using the existing number and location of pumping wells, the contamination cannot be 
contained and LNAPL escapes moving towards the sea.   

 
Parameter Value GA parameters  
Population number  30 Crossover probability: Pc 0.8 
Max. number of iterations 500 Mutation probability: Pm 0.1 
Pumping rate bounds: Qmin, Qmax 0 kg/s , 0.002 kg/s   
Minimum LNAPL head: Hmin 0.005 m DE parameters  
Cost coefficient: c1 0.001 €/kg Crossover parameter: Cr 0.8 
Weights: w1 , w2 , w3  0.01 , 1 , 10  Scaling parameter: F 0.5 

Table 1: Parameters used by the optimization algorithms (GA and DE) 

Pumping well QGA (kg/s) QDE (kg/s) Pumping well QGA (kg/s) QDE (kg/s) 
P1 -41045.1 ×  -41041.1 × P6 -41046.2 ×  -41038.2 ×
P2 -41064.2 ×  -41051.2 × P7 -41054.4 ×  -41049.4 ×
P3 -41094.1 ×  -41092.1 × P8 -41036.2 ×  -41003.2 ×
P4 -41005.2 ×  -41092.1 × P9 -41061.1 ×  -41044.1 ×
P5 -41080.3 ×  -41075.3 × P10 -41004.1 ×  -41035.3 ×

Objective value 13.38 13.42    
Table 2: Optimal pumping strategies for GA and DE 

This is also evident when comparing the initial and final LNAPL distributions (Figures 1b 
and 2); while the maximum LNAPL thickness has been reduced, the plume’s extent has been 
increased. The optimal objective function values for the two algorithms are very similar with 
that of the GA being slightly better. One the other hand, the DE converges much faster to a 
nearly optimal solution, as can be observed in Figure 3. 

 
Figure 2: a) Final LNAPL thickness distribution, b) Convergence rate of GA and DE algorithms 
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4 CONCLUSIONS 
The solutions obtained using the two optimization algorithms are very similar, concerning 

the pumping rates, the optimal objective function values and the computation time needed to 
perform the same number of algorithm iterations. The genetic algorithm converges to a 
slightly smaller objective value (13.38 for the GA and 13.42 for the DE); this difference is 
considered negligible. However, as can be observed in Figure 3 the DE converges to a nearly 
optimal solution much faster than the GA (around 50th generation in comparison to the GA 
which converges around the 145th generation). Thus, it can be said that if a convergence 
stopping criterion was used instead of allowing the algorithms to run a fixed number of 
iterations, then the computation time needed by the DE in order to find a satisfactory solution 
would be much smaller than the GA.  

The results indicate that the existing number and location of extraction wells fails to 
contain the LNAPL plume during the given pumping period; free product escapes and moves 
towards the shoreline. Consequently, future work will focus on identifying optimal locations 
for drilling new wells that can satisfactory contain and remove the LNAPL contamination in 
the area. In addition, the number and length of pumping periods to ensure successful 
remediation can be included as a design parameter when constructing the optimization 
problem.  
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