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Summary. Among open scientific challenges facing large scale implementation of CO2

sequestration, are geological structures at different scales not properly dealt with at the
injection scale. Faults and fractures, in particular, could have large impacts on the flow
dynamics and CO2 leakage to the atmosphere. In order to give a full 3D representation
to these sensitive zones we present an approach for simulating multiphase fluid flow on
non-overlapping, non-matching, multi-block grids. Capillary pressure and relative per-
meability properties of fault zones are explicitly taken into account in this approach.
The underlying technique was implemented in the framework of a domain decomposition
leading to development of a multilevel multigrid iterative scheme. Different interpolation
methods between the coarse and fine grids in the fault zones have been tested leading to
an improved implicitness, and thus allowing larger time step sizes to be taken. Results of
numerical experiments for a simplified, but computationally demanding reservoir models
are presented.

1 INTRODUCTION

While the number of field tests of CO2 storage in deep saline aquifers and depleted
hydrocarbon reservoirs is growing considerably during the last years, its appraisal at large
scale in sedimentary basins rises fundamental scientific concerns [6]. Among these, ques-
tions like ”What would be the mass fraction of gaseous or supercritical CO2 at the exit of
a fault zone after many years of injection?” or ”How uncertainties in intrinsic properties
of these faults do impact capacity and storage effectiveness, or leakage flux to overlying
freshwater aquifers, if any?” have not been discussed on a wide breadth. Some of reported
numerical modeling studies have tackled the problem from a codes benchmarks perspec-
tive to establish confidence in available simulation techniques [3]. Other approaches fairly
simplify the domain geometry, by considering explicitly the fault as a single domain, fa-
voring a study of advanced non-isothermal multiphase leakage processes [9]. Recently,
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detailed geometrical features of the aquifer have been considered in geological modeling
of the Johansen formation by [4] but they do rely on the common-place transmissibility
multipliers approach to assign fault properties. The later approach is usually effective for
single-phase flow to approximate rock and fluid properties across low-dimensional fault
surfaces from neighboring cells. In [7] two phase flow transmissibility multipliers are de-
rived. As a general rule, CO2 multiphase flow processes require fine scale permeability,
relative permeabilities, and capillary pressure properties to be assigned to fault zones
explicitly.
The main goal of this paper is to investigate this explicit modeling approach around a
single three-dimensional fault zone. We focus, in this work, on a local grid refinement
technique (LGR) leading to an overall reduction of the unknowns resulting from fine dis-
cretisation in these zones. A detailed study of the underlying physics when taking this
approach into account will not be considered herein. The later requirements related to
quantitative modeling will be investigated thoroughly in future research studies. Thus, we
aim to include the detailed geometry and material properties of the fault, while its imme-
diate surroundings is best represented as an equivalent porous medium whose properties
might be deduced through upscaling of fractured networks. To allow for such complex
modeling we avoid discretization on conforming meshes directly.
In this presentation reduction of the computational burden is achieved through a domain
decomposition. The latter splits the governing equations among smaller sub-domains to
be solved independently. Mass conservation along non matching interfaces of different
subdomains is iteratively found with a two-level Multigrid like solver. The numerical
scheme ensures convergence of the usual Newton-Raphson iteration and the composite
grid iteration simultaneously.
The following section briefly introduces the governing equations used by our numerical
model. Next, the main steps taken in the implementation of the LGR technique and
the two-level solver are presented. The fourth section demonstrates the application of
the developed procedure to a hypothetical heterogeneous and anisotropic saline aquifer
involving both layered and structural heterogeneities. Then we end up with conclusions,
possible extensions of this modeling approach, and its application to different areas in
CO2 sequestration science.

2 MATHEMATICAL MODEL

When carbon dioxide remains as a supercritical phase, it can be considered as a slightly
compressible fluid. Under these assumptions, the governing two-phase fluid flow motion
equations are expressed using a coupled system of global pressure and phase saturation
equations given by [2, 5]

ct
∂p

∂t
= ∇. [kλt (∇p − (fwρw + fcρc) g∇z)] +

qw

ρw

+
qc

ρc

(1)
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φ
∂Sc

∂t
= −∇.

[

kfcλw

(

dpc

dSc
∇Sc − ∆ρg∇z

)

+ fcu

]

+
qc

ρc
(2)

Where ct is the total compressibility of the fluid and rock system, φ is the rock porosity, p is
the fluid pressure, λt = λw + λc is the total mobility, λl = krl

µl
is the relative permeability,

krl, of phase l=(w:water, c:CO2) to its viscosity, µl, ratio; k is the principal intrinsic
permeability tensor of the porous medium, Sc is the saturation of CO2 fluid phase, fl = λl

λt

is the fractional flow function of phase l, u = uw + uc is the total fluid flow velocity, pc

is the capillary pressure, ρl is the density of fluid phase l, ∆ρ = ρw − ρc is the difference
between densities of CO2 and aqueous phases respectively, ql is the time-dependent total
injection/withdrawal term of phase l, ∇ =

(

∂
∂x

, ∂
∂y

, ∂
∂z

)

is the partial differential operator, t

is time, g is the z-axis component of the gravity vector g = (0, 0,−g)T directed downward.
The transport equation for dissolved non-reactive CO2 species in the aqueous phase,
including fluid advection and macro-dispersion effects [1], is

φ
∂ (1 − Sc) C

∂t
= −∇. (Cuw) + ∇. (φD∇C) + ρcTd (3)

Where C is the concentration of CO2 in the aqueous phase, D is the dispersion tensor,
and Td is the mass transfer by the dissolution mechanism which could be reasonably
approximated for a range of subsurface temperature and pressure conditions by a lumped
thermodynamic model. Equations 1, 2 and 3 are supplemented by closure relationships
for rock and fluid equation of state properties [2], such as saturation dependent relative
permeabilities, krl(Sw), and capillary pressure, pc(Sw), curves.

3 MODELING CONCEPTS AND NUMERICAL IMPLEMENTATION

It is well known that the discretization of equations 1, 2 and 3 as a coupled set leads to a
non-linear set of equations, regardless of the numerical method used [2]. These equations
are solved directly with a Newton-Raphson iteration or through Newton-like linearization
methods. One class of the latter methods involves decoupling the equations by dropping
all cross-derivative terms in the Jacobian matrix leading to a sequential iteration scheme.
The solver presented in this work is independent on the coupling scheme, it involves only
access to the system Jacobian as discussed further in the text.

3.1 Local grid refinement

Our choice of LGR technique for simulation of CO2 storage applications stands on previ-
ous experiences associated with difficulties to optimize the mesh size for three-dimensional
problems [3]. Refinement is generally required in the vicinity of injection wells, very per-
meable structures, or highly heterogeneous zones. Implementation of the technique enable
us first to reduce the problem size to a bear minimum. Second, coarse cells decompo-
sition allow for independent numerical solutions in refined subdomains which enhances
accuracy and reduces memory usage. Notice also that a parallel implementation based
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on this approach is quite straightforward.
We start by defining a coarse and possibly irregular grid, Ωc, which is matching at all
interfaces. Then any coarse cell in this grid might be irregularly decomposed in 3-D space,
if needed, to build a fine subdomain Ωi. To allow for greater flexibility, each of these sub-
domains have its own level of refinement independently on the others. Therefore we end
up with a composite grid, Ω = Ωc + ∪Ni

i=1Ωi consisting of some coarse cells and all refined
subdomains. This composite grid is non-matching at some interfaces and non-regular,
this is known as multi-block data structure.

3.2 Numerical scheme

We apply the fast composite adaptive method introduced by [8, 10] for local refinement
to the following nonlinear system of equations in the composite grid Ω

Jn∆Xn+1 = bn (4)

Where Jn is the system Jacobian at time level n. In this numerical scheme the composite
solution is sought by a two-level iteration between fine and coarse partitions. It can be
envisioned as a Multigrid scheme which, in its principles, uses the error approximation in
the coarse grid to iteratively update the composite solution.
We consider the restriction and prolongation operators R and RT to map solution vectors
between the composite grid and the coarse grid, respectively. The Later is nothing else
than an interpolation from the coarse to the composite grid. Another restriction operator,
Si, maps the solutions from the composite grid to fine subdomain Ωi, such that XΩi

= SiX.
Notice that combination of operators Si and RT leads to definition of another mapping
operator, RT

i = SiR
T from the coarse grid to the fine subdomain Ωi.

Denoting the Newton iterate in equation 4 by Xn,m and the solution increment as

∆Xn,m = Xn,m − Xn (5)

the composite problem, at Newton iteration step m, turns out to be

Jn∆Xn,m = bn (6)

An intermediate iterate Xn,m+1/2 is defined as the sum of the previous solution to the
linear system of equations 6 and an interpolation of a coarse grid correction calculated at
iterate m, Cm, onto the composite grid. That is

Xn,m+1/2 = Xn,m + RT Cm (7)

Substitution of equation 7 into equation 6 and application of the restriction operator to
the coarse grid yields the equation

RJnRT Cm = R(bn − Jn∆Xn,m) (8)
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The right hand side in the coarse equations is nothing else than the restriction of the
composite grid residual to the coarse grid Ωc. The later remark simplifies also implemen-
tation in computer programming.
Once the coarse scale equations 8 are solved, coarse solution vector, Xn,m+1

Ωc
, at iterate

m + 1 is updated according to the following equation

Xn,m+1
Ωc

= X
n,m+1/2
Ωc

= Xn,m
Ωc

+ RT
c Cm (9)

On the other hand, fine subdomain solution vectors, X
n,m+1/2
Ωi

, are updated at intermediate
iteration level m + 1/2

X
n,m+1/2
Ωi

= Xn,m
Ωi

+ RT
i Cm i = 1, ..., Np (10)

The latter solution is taken as new boundary conditions in all fine subdomains. We next
update Newton increments, at the fine scales, by solving in all subdomains

Jii∆Xn,m+1
Ωi

= bn
Ωi

−
∑

j 6=i

Jn
ij∆X

n,m+1/2
Ωj

i = 1, ..., Np (11)

where Jn
ij is the contribution from the neighbor subdomain j to ith non-matching bound-

ary ensuring flux continuity requirement. This two-level iteration proceeds until a given
stopping criteria norm is satisfied for the composite solution vector. This is taken herein
as the relative error norm

||Xn,m+1 − Xn,m||

||Xn,m||
< ǫ (12)

where ǫ is a predefined tolerance usually in the range between 10−5 and 10−9.
The numerical scheme presented in this paragraph has been implemented as an indepen-
dent object oriented mathematical toolbox in MATLAB software to promote reuse for
other applications. Next to this first proof-of-concept stage we plan a port to a high level
computer language, such as C++, for much greater efficiency and portability to other
computer platforms.

4 NUMERICAL RESULTS

The LGR technique and two-level solver presented previously have been applied to
simple theoretical one- and two-dimensional problems. These results are not reported
here for compactness, but will be given in upcoming publications. The numerical model
is shown to be applied directly to a full three-dimensional test case according to our initial
objectives.

We consider a global simulation domain of 1000x200x150 m3 size. Two fault zones,
parallel to x-axis, with a lateral extension of 20 meters each, separate three stratigraphic
heterogeneous and anisotropic layers of 30 meters depth. Fault mid-planes are located at

5



Adil M. Sbai

400 and 500 meters from the downstream left boundary and have vertical drops of 20.2
and 95.5 meters, respectively (Fig. 1). The top surface of the deeper stratigraphic layer
is 2000 meters deep. The three permeable layers are sandwiched between clayey zones
which are coarsened 10 times in all directions. The final composite grid have only 23280
cells among which 23200 are in the fine zones. A uniform cell size of 10x10x3 m3 in the
five zones of interest is selected to allow for a geostatistical description of the layered and
structural heterogeneities.

Figure 1: Permeability distributions in the three faulted blocks and the two fault zones of the problem
test case (plotted values are in Log-scale).

The permeability distribution shown in figure 1 is assumed to follow a simple log-normal
distribution in each layer of the three stratigraphic units and fault zones. Fluids densities
and viscosities are hold constants during the simulation and simple quadratic power law
relative permeability laws are selected. A constant pressure boundary condition equal to
200 bars is attributed to the downstream surface, parallel to x-axis, in the third faulted
block, while all other boundaries are closed. CO2 is injected at a constant rate of 70 t/day
during all 3000 days of the simulation period.
Figure 2 shows distribution of CO2 saturations during later times (2500 and 3000 days)
for two cases. The only difference between the two simulations is the capillary function
attributed to the fracture zones. In the first case, CO2 leakage at the top boundaries of
the fracture cells is quite apparent, hindering storage effectiveness. In the second case,
capillary pressure forces in fractures exceed buoyant gravity forces, such that CO2 flows
underneath and continue its migration in other stratigraphic blocks. We notice also a
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longer extension of the plume in the second case demonstrating a much higher storage
efficiency. Hence, our simulations highlight sensitivity of faults two-phase flow properties
with regards to sequestration capacity and security simultaneously. Our future simulation
efforts will focus on model applications to more realistic scenarios inspired from natural
analogues of oil and gas reservoirs showing accumulations near faulted zones.

Figure 2: CO2 saturation maps after 2500 and 3000 days of injection for case 1 (top) and case 2 (bottom).
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5 CONCLUDING REMARKS

This work had presented an approach for numerical modeling of two-phase flow prob-
lems in faulted reservoirs. Structural and layered heterogeneities may be combined explic-
itly and thus allowing to undertake much comprehensive simulations on full-scale realistic
geological models. A local grid refinement technique leading to a two-level multigrid solver
substantially reduce the computational requirements and shows to be effective for CO2

storage simulations. Our future research work involves applications to natural analogues
and refinement of multiphase processes taken into account by the numerical simulator.

Acknowledgments This research work is supported by the French Research Council
(ANR), under contract number ANR-06-CO2-006-01 in the framework of HETEROGENEITES-
CO2 project initiative.

REFERENCES

[1] J. Bear and Y. Bachmat. Introduction to modeling of transport phenomena in porous media,
Kluwer Academic Publishers, (1990).

[2] Z. Chen, G. Huan, and Y. Ma. Computational methods for multiphase flows in porous

media, SIAM, (2006).

[3] H. Class, et al. A benchmark study on problems related to CO2 storage in geologic forma-
tions. Comput. Geosc., 13(4), 409-434, (2009).

[4] G.T. Eigestad, H. K. Dahle, B. Hellevang, F. Riis, W.T. Johansen, and E. ian. Geological
modeling and simulation of CO2 injection in the Johansen formation. Comput. Geosc.,
13(4), 435-450, (2009).

[5] R. Helmig. Multiphase flow and transport processes in the subsurface, Springer, (1997).

[6] IPCC. Carbon Dioxide Capture and Storage. Bert Metz, Ogunlade Davidson, Heleen de
Coninck, Manuela Loos and Leo Meyer (Eds.) Cambridge University Press, UK. pp 431,
(2005).

[7] T. Manzocchi, A. E. Heath, J. J. Walsh and C. Childs. The representation of two phase
fault -rock properties in flow simulation models. Petroleum Geosc., 8, 199-132, (2002).

[8] S. McCormick and J. Thomas. The fast adaptive grid composite method for elliptic bound-
ary value problems. Mathematics and Computing, 46, 438–456, (1986).

[9] K. Pruess. Thermal effects during CO2 leakage from a geologic storage reservoir. Lawrence
Berkeley National Laboratory, Report LBNL-55913, (2004).

[10] R. Teigland. On some variational acceleration techniques and related methods for local
refinement. Int. J. Num. Meth. Fluids, 28, 945–960, (1998).

8


	INTRODUCTION
	MATHEMATICAL MODEL
	MODELING CONCEPTS AND NUMERICAL IMPLEMENTATION
	Local grid refinement
	Numerical scheme

	NUMERICAL RESULTS
	CONCLUDING REMARKS

