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Summary.  In this work we discuss coupling difficulties that arises when solving phase and species conservation equations. We present a compositional formulation that avoids these difficulties, and allows solving multiphase reactive transport problems for a generic number of species and reactions. The formulation is illustrated by an example.
1
INTRODUCTION

Reactive transport modeling involves the simultaneous study of the conservation of several phenomena. Most general formulations include: conservation of phases (solid and fluids), conservation of species, momentum conservation and energy conservation7.  Several variables in these equations are related by constitutive laws that couple these phenomena, increasing the difficulty to solve them. Variables like phase density, viscosity and saturation degree are present in all equations and may be affected by all the states variables of the system1. Reactions relating species form different phases (heterogeneous reaction) also coupled species and phases conservation phenomenon by producing source/sink terms that will affect both. 
Depending on the individual characteristics of the problem to be solved, there are several ways of dealing with the coupling of these phenomena. For example when changes in linking variables are relatively small during a time step, phenomena can be solved independently and changes in variables may be considered time-laged, or even neglected6,2. In case were these simplification cannot be made (e.g., density driven flow, production of gaseous CO2 and CH4, dry scenarios with evaporation or precipitation of hydrated minerals) interaction between phenomena must be considerd. This implies a significant increment in calculation time and, if all phenomena are solved simultaneously, an increase in size and complexity of the system to be solved.

In this work we focus on the interaction between the phase conservation and the species conservation and we present a compositional formulation that avoids coupling problems. Momentum conservation is considered by Darcy’s law and is directly substituted in the other conservation equations. Coupling with energy conservation is not discussed.

2
reactive transport Compositional formulation 

2.1 Vantages of compositional formulation

Most of the reactive transport codes, at our knowledge, consider both conservation of phases and conservation of species. This may be conflictive, because by definition the sum of all conservation equations of species belonging to a phase must be equal to the conservation equation of the phase.  Thus, in order to obtain a linearly independent system of equation one species conservation equation should be removed for each phase. When considering phase conservation another difficulty appears which is the phase sink/sources due to heterogeneous reactions in equilibrium. The fact that there is no explicit expression for equilibrium reaction rates increases the complexity of the system to be solved. 
A compositional formulation eliminates these conflicts by setting out a combination of species conservation equations, avoiding phases4, and eliminating all equilibrium reaction rates terms. Excluding phase conservation equations also facilitates coupling with momentum or energy conservation by reducing the kinds of phenomena to solve. 
Composition formulation has been used to solve multiphase problems in aquifers and oil reservoirs but normally for a small number of species. In this work we present a general formulation that can be applied to an undefined number of species.

2.2 Proposed formulation
We start the formulation introducing a general conservation equation for specie 
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 that belongs to phase 
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Where  
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 is the volumetric content of phase
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is mol concentration of specie 
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 is the transport operator, Ne is the number equilibrium equations  
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is the stoichiometric coefficient of reaction 
[image: image11.wmf]j

 for specie 
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is the reaction rate for reaction 
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 and 
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 is a source/sink term that contains contributions of kinetic reactions and boundary exchanges of specie 
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Were
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 is the Darcy flow for the 
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 is the diffusive-dispersive mol flow, Fickean in this case. 
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 is the intrinsic permeability, 
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are the relative permeability and the viscosity of the phase, 
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 is the phase pressure gradient,
[image: image29.wmf]a

r

g

 is the phase density times gravity, 
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 is the phase diffusion coefficient, 
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 is the tortuosity, 
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is the identity matrix and 
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are the longitudinal and transversal dispersion coefficients. The 
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operator is null for immobile species, like minerals or adsorbed species.
Conservation equations of all species can be represented in a vectorial way 
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Were 
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is a vector with the concentration of all species, 
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is a vectorial operator with the corresponding phase transport operator to each specie, 
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is the stoichiometric matrix, and 
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is a vector with all species source/sink terms. 
Besides solving species conservation equations, a reactive transport problem implies mass action equations. The latter can be written in a matrix notation as:


[image: image41.wmf]loglog0

×-=

e

Sak

  





 MACROBUTTON MTPlaceRef \* MERGEFORMAT (6)

where 
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is the stoichiometric matrix of size Ne (number of equilibrium reactions) x Ns (number of species), 
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 is a vector with the equilibrium constants of all (Ne) reactions ,and 
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is a vector with the activity of all (Ns) species. The activity of a specie 
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(or fugacity for gaseous species) is defined as:
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Were 
[image: image47.wmf]i

g

represents the activity or fugacity coefficient, and 
[image: image48.wmf]i

x

the molality or partial pressure for a liquid or gaseous specie respectively. We treat mineral species as ideal species, thus its activity is considered equal to one.
The set of Ne mass action equations (6)

 allowed us to obtain an expression to calculate Ne species molality or partial pressure (secondary species) as a function of Ns-Ne species (primary species). As mineral activities are considered equal to one, the number of primary species can be reduced to Ns-Ne-Nme (were Nme is the number of equilibrium minerals). 
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A full description of this procedure and how 
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and 
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are calculates is given by Saaltink et al.5.
Equilibrium reaction rate terms 
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 in 
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 can be eliminated by linearly combining the mass balance equations. To do so, we define the matrix  GOTOBUTTON ZEqnNum604800  \* MERGEFORMAT (also known as component matrix, (Ns-Ne)xNs ) as:
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Multiplying equation 
(5)

 times GOTOBUTTON ZEqnNum604800  \* MERGEFORMAT ensures elimination of all equilibrium reaction rates. It also leads to the definition of components as 
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 times (9)

 become linear combinations of species that are not affected by equilibrium reactions. Multiplying system  GOTOBUTTON ZEqnNum313255  \* MERGEFORMAT yields to a system of size (Ns-Ne): 
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When mineral phases are present in equilibrium, Gibbs phase rule indicates that the system looses one degree of freedom for every additional mineral phase.  Therefore the definition of components needs to be updated. There are several ways to achieve this goal, depending on the additional properties one may wish for components (see Molins et al.3). Here we will use the approach of Saaltink et al.5, where the initial component matrix 
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 is multiplied by an elimination matrix 
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( (Ns-Ne-Nme)x(Ns-Ne), were Nme is the number of mineral in equilibrium) to obtain the reduced component matrix 
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system (10)

 can be written as:
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2.3 Solving variables and secondary variables
We set out Ns conservation equations (12)

. (6)

 and the fact that the mineral activity is considered equal to one, allowed us to obtain all species concentration, except the equilibrium minerals, as a function of Ns-Ne-Nme primary species. This is the dimension of the vectorial component concentration equations (1)

 and for each we have the species concentration as unknown. The set of Ne mass action equations 
As the chemical unit for aqueous species concentration is molality, the liquid 
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 specie concentration becomes a constant. This gap in the unknowns can be used to include liquid pressure as a solving variable. Gas pressure can be calculated as the sum of all gaseous pressures, so it can be considered as a secondary variable. Thus, the liquid and gas pressure, which normally are associated to phase conservation, are considered as primary and secondary variables of component conservation, respectively. 
The vectorial component concentration 
(12)

 will be solved considering liquid pressure and Ns-Ne-Nme-1 primary species as solving variables. Aqueous species volumetric concentrations  GOTOBUTTON ZEqnNum548664  \* MERGEFORMAT can be calculated using the expression: 
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Were 
[image: image67.wmf]i

m

is the specie molality, 
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is the phase density and 
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is the water mass fraction on the liquid phase. An expression for this last variable can be obtained from the sum of all liquid species mass fraction
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Gas volumetric concentration can be calculated according to the gas model used. For ideal gas model volumetric concentration can be expressed as:
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Were 
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p

 is the partial pressure of specie 
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, 
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 is the universal gas constant and  
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the absolute temperature. Non equilibrium minerals are always considered as primary species. Equilibrium minerals, (which have been eliminated from the system by multiplying by
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, are calculated from equations (12)

. As the number of unknowns (equilibrium mineral concentrations and reaction rates that is 2Nme) is lower than the number of equations (Ns), some equations may be ignored or least squares techniques could be applied.
(5)

 after the rest of the species have been solved from equations 
2.3 Formulation application 
For a better understanding of the formulation, we illustrate it by setting the equations for a 2 phase system considering the following equilibrium reactions: 
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The vector of concentrations, components and source/sink terms, and the stoichiometric and reduced component matrix for this system are given in Table 1
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Table 1 - vector of concentration, components and source/sink terms, and the stoichiometric and reduce component matrix for this system
Substituting component vectors in component conservation equation (12)

 leads to
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One possible set of solving variables are the liquid pressure 
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and the molality of 
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. The rest of species can by calculated by expression (8)
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2
CONCLUSIONS 

Solving reactive transport problems considering phase conservation implies dealing with source/sink terms that depends on equilibrium reaction rates for which there are no explicit expressions. These terms increase the complexity of the system to solve. 

We have shown that for cases where Darcy’s Law is considered to represent momentum conservation, a generic multiphase reactive transport problem can be formulated considering only species conservation equation and no explicit phase conservation. The formulation eliminates all equilibrium reaction rates.
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