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Summary. The spatial variations in porous media, such as aquifers and petroleum
reservoirs, occur at all length scales (from the pore scale to the reservoir scale) and are
incorporated in the governing equations on the basis of random fields (geostatistical mod-
els). As a consequence, the velocity field is a random function of space. The randomness
of the velocity field gives rise to a mixing region between fluids, which can be characterized
by a mixing length ℓ = ℓ(t). Under very general hypotheses, the scaling behavior of the
mixing region is related to the scaling properties of the geological heterogeneities through
relation ℓ(t) ∼ tγ, where γ = max{1/2, 1−β/2} and β is the Hurst coefficient. It gives a
measure of relative importance of short vs. long length scale heterogeneities. In this work
we use the theoretical result before to evaluate the representation of random fields using
the Karhunen-Loève decomposition approach. For this we perform a numerical study
for a statistical description of the mixing length, verifying the occurrence these scaling
laws.The results shown that is necessary a large number of terms of the Karhunen-Loève
to achieve a satisfactory approximation of the mixing length growth of the tracer flow in
a fractally heterogeneous porous medium.

1 INTRODUCTION

The spatial heterogeneity of hydraulic properties of the natural porous media (aquifers
and petroleum reservoir) produce important effects in the subsurface flows. These het-
erogeneities occurs at all length scales and, typically, its geological knowledge is much
less detailed than is necessary to predict flow properties deterministically. Thus to model
the uncertainty associated to flows we must use a stochastic approach. In this manner,
several stochastic methods have been developed to deal with scarcity of field data.

The most conceptually straightforward method to solve stochastic equations is the
Monte Carlo algorithm (MC ) in which the relevant statistical moments are determined
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by averaging an ensemble of equally probable deterministic solutions9;3. Despite the
Monte Carlo method is appealing due to its simplicity and has been widely applied in
the numerical solution of a broad range of linear and nonlinear stochastic partial differ-
ential equations, it suffers from the drawbacks associated with the high computational
costs involved with the large number of realizations often required to achieve statistical
convergence and the fine grid resolution scales.

To overcome the high computational cost of Monte Carlo other methodologies have
been proposed to solve equations governing flow in random media. In this sense, the
Karhunen-Loève expansion (KL) has been widely used associated with finite element
methods (Galerkin’s numerical method) in order to reduce the complexity of the model
by truncating the expansion at a suitable value16. Among them, we have the Spectral
Galerkin method proposed by7 and the Stochastic Collocation (SC ) method2. However,
the spectral Galerkin method suffers from the same large computational costs, since it
generates non-sparse matrices associated with fully-coupled discrete equations and re-
quires a large stochastic dimension in strongly heterogeneous media, so this numerical
method may be as computationally expensive as MC 7;1;5.

The SC method seeks an approximated solution in the truncated polynomial chaos
space spanned by tensor product of orthogonal polynomials, from which a set of Gaussian
collocation points is determined. This method is based in the affirmation that the source of
randomness can be approximated using just a small number of uncorrelated, sometimes
independent and these variables can be approximated in terms of base functions that
depend of the zeros of orthogonal polynomials. In particular, whenever the random fields
are expanded in a truncated Karhunen-Loève expansion, a particular choice of the basis
for the tensor product space leads to the solution of uncoupled deterministic problems
as in a Monte Carlo simulation2;11;13. The main advantage of solving uncoupled systems
arising from SC is the natural format for parallel computing. On the other hand, the
number of uncoupled systems exponentially grows with the stochastic dimension (fact
commonly referred as the curse of dimensionality).

In this paper our main objective is verify the use of KL expansion, with reduced the
complexity (truncated), to represent random fields with fractal covariance decaying in
MC studies of the tracer flow.

2 THE STOCHASTIC FLOW MODEL

We begin by presenting the mathematical model and the stochastic geology considered
in this work.

2.1 Governing equations

The linear transport in porous media is governed by equation

∂s

∂t
+ ~v · ∇s = 0, (1)
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where s is the saturation of the tagged fluid and the random velocity field ~v is determined
by Darcy’s law and the incompressibility condition:

~v = −K

µ
∇p and ∇ · ~v = 0. (2)

Here K is a log-normal permeability field, whose properties are discussed below, µ is the
fluid viscosity, and p is the pressure.

In formulating (1), (2) we neglected the effects of gravity, compressibility and pore
scale dispersion and set the porosity equal to a constant (it has been removed from the
transport equation by rescaling the time variable).

For the numerical simulations we consider Eqs. (1) and (2) in a rectangular domain
Ω = [0, Lx] × [0, Ly], with boundary conditions

~v · ~n = −q, in x = 0,
p = 0, in x = Lx,

~v · ~n = 0, in y = 0 and Ly,
(3)

where ~n is the outward-pointing normal vector to ∂Ω. The initial condition is given by

s(~x, t0) =

{

1 when x < 0,
0 when x > 0.

(4)

The boundary conditions (3) simulate a flow predominantly parallel to the x axis (left-
to-right). The tagged fluid is injected uniformly (at a constant rate q) through the left
vertical boundary (x = 0) of Ω, which initially is saturated with untagged fluid. No
flow conditions are imposed along the horizontal boundaries y = 0 and y = Ly. Fluid
is produced from a well kept at constant (zero) pressure at the right vertical boundary
(x = Lx).

2.2 Self-similar geology

We consider scalar, log-normal permeability fields

K(~x) = K0e
αY (~x), K0 > 0 fixed, (5)

where α is the heterogeneity strength that sets the overall strength of the fluctuations
of the random field K. Y (~x) is a Gaussian random field characterized by its mean and
covariance function. We consider a self-similar (or fractal)9;10 model that introduce vari-
ability over all length scales. Thus the mean is an absolute constant, which we take to be
zero, and the covariance is given by a power law:

CY (~x, ~y) = 〈Ỹ (~x)Ỹ (~y)〉 = |~x − ~y|−β, β > 0. (6)

Here angle brackets (〈·〉) denote ensemble averaging and Ỹ := Y − 〈Y 〉 is the stochastic
deviation from the mean (fluctuation). Note that the fractal covariance (6) is singular
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at short distances and a cutoff rc > 0 is necessary to regularize the fractal random field
for sufficiently small lag-distances r. Thus, we can assume that the random fields Y
are stationary and isotropic. This implies that the mean is independent of ~x and the
covariance depends only on the distance between two points, i.e. CY = CY (r), where
r = |~x − ~y| is the lag-distance.

The scaling exponent β controls the degree of multiscale heterogeneity: As it decreases,
the heterogeneities at the larger length scales are emphasized and the field becomes more
regular (locally).

2.3 Karhunen-Loève Expansion (KL)

A random field (random process) can be represented as a series expansion involving
a complete set of deterministic functions with corresponding random coefficients. The
central idea is to describe a given statistical ensemble with the minimum number of
modes.

The Karhunen-Loève procedure was proposed independently by12 and14 and is based
on the eigen-decomposition of the covariance function. Then consider a random field
(or stochastic process) Y (~x, ω) defined on a probability space (Ω,A,P) composed of the
sample space, the ensemble of events and a probability measure, respectively, and indexed
on a bounded domain Ω. The process Y can be expressed as

Y (~x, ω) = 〈Y (~x)〉 +
∞
∑

i=1

√

λiφi(~x)ξi(ω), (7)

where λi and φi are the eigenvalues an eigenfunctions of the covariance function CY (~x, ~y).
By definition, CY (~x, ~y) is bounded, symmetric and positive definite and has the following
eigen-decomposition:

CY (~x, ~y) =
∞
∑

i=1

λiφi(~x)φi(~y). (8)

The eigenvalues and eigenfunctions of Eq. (8) are the solution of the homogeneous
Fredholm integral equation of second kind given by

∫

Ω
CY (~x, ~y)φi(~x)d~x = λiφi(~y). (9)

3 MIXING LENGTH GROWTH

The growth of macroscopic mixing region, induced by the random velocity field, of the
tracer fronts flowing in a fractally heterogeneous porous medium is shown to be anomalous
in cases dominated by slowly decaying correlations8.

For the tracer flow problem (1)-(4), (5)-(6), a characterization of the long-time asymp-
totic growth of the mixing region was obtained in8;17 within distinct analytic approxima-
tions at the level of perturbation theory. Theory of fluid mixing provides the following
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scaling law for the mixing length ℓ = ℓ(t), which characterizes the size of the region where
the fluids mix macroscopically:

ℓ(t) = O(tγ), with γ = max

{

1

2
,
1

2
+

1 − β

2

}

. (10)

Two qualitatively distinct regimes occur: if β > 1, then γ = 1/2, and the mixing process
is Fickian; if 1 > β > 0, then γ > 1/2, and the mixing is anomalous (i.e., the diffusivity
increases with time or, equivalently, with travel distance).

This scaling law is valid in the limit of small velocity fluctuations, and provides quanti-
tative agreement with numerical simulations for a range of moderately large permeability
heterogeneities9;3.

4 NUMERICAL EXPERIMENTS

In this section we conduct a numerical experiment to illustrate the effect of truncation of
the KL expansion on the mixing length growth. For this purpose, we perform Monte Carlo
simulations conducted over ensembles of 1 000 realizations of the permeabilities (generated
with different M values) to compute the mixing length in accordance with6;3. Hence, for
each ensemble of realizations of the permeability field K, the Eqs. (1) and (2), subject to
boundary (3) and initial condition (4), were solved numerically by an accurate simulator
which combines the mixed finite element method4, for the solution of the velocity-pressure
equation, with a second order, non-oscillatory central finite difference scheme15, for the
solution of the saturation equation. The input data used in the experiments were: Lx =
Ly = 1.0, Hurst coefficient β = 0.5, q = 1.0 and α = 0.5.

The computed saturation profiles s = s (~x, t) are then averaged in the direction trans-
verse to the mean flow (the y-direction) and across the ensemble to define s̄ = s̄(x, t),
which is used to compute numerically the mixing length (see3):

ℓ(t) = 2
√

π
∫ Lx

L(t)
s̄ (x, t) dx. (11)

Here, Lx is the length of computational domain in the horizontal direction x and L(t) =
〈~v〉t is the mean distance traveled by the heterogeneous front over the time period t.

Realizations of the Gaussian random field Y (β = 0.5 and 100 × 100 mesh) were
generated numerically using the KL expansion (7) truncated at M = 10, 100, 1 000 and
10 000 terms. For this the Fredholm integral (9) was solved with a Galerkin method.

We highlight that the randomness must be realistically represented to achieve a mean-
ingful solution to the mixing length growth problem. Hence, in order to check the quality
of the random fields we computed the covariance of the ensemble (1 000 realizations). In
Figure 1 we display the computed covariance (in x-direction) as a function of the lag-
distance r. Solid curves are adjusted by a least squares fit and the respective regression
coefficients R2 are shown. The results exhibit a good agreement between the theoretical
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behavior (β = 0.5) and the numerical one only for M = 1 000 and M = 10 000. Small
values of M were not sufficient to represent the covariance function in a satisfactory way.
This poor representation of the geology obtained with small M values will affect the
mixing length growth.
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Figure 1: Power-law covariance as a function of the lag-distance r in the x-direction using a 100 × 100
geological mesh (β = 0.5).
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Figure 2: The mixing length as a function time (β = 0.5).

Figure 2 shows the mixing length in terms of time. The solid curves are adjusted by a
least squares fit. The initial points (small times) were not considered because the mixing
function is dominated by numerical error. The scaling exponent (γ = 0.77 in Figure 2(a))
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obtained for the expansion truncated with M = 10 000 exhibit a good agreement with
the theoretical prediction (γ = 0.75 in Eq. (10)). Here we emphasize that the theoretical
prediction are restricted to the regime of small fluctuations and to asymptotic times. The
random fields generated with KL expansion truncated at M values 10, 100 and 1 000 were
not effective to provide a satisfactory representations of the stochastic model of the tracer
flow.

A visual comparison between the mixing lengths obtained with different M values is
given by Figure 3. Mixing length growth was underestimated by the experiments with
small M values. Note that when M increases the mixing length converges to the one
obtained with M = 10 000. The discrepancy of the results suggest that a good approx-
imation of stochastic problem with fractal geologies only will be obtained with a large
number of terms of the KL expansion which makes computationally infeasible methods
such as Stochastic Collocation and Spectral Galerkin due the ”curse of dimensionality”.
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Figure 3: The mixing length as a function time (β = 0.5).

5 CONCLUSIONS

• The results shown that is necessary a large number of terms of the Karhunen-Loève
to achieve a satisfactory approximation of the mixing length growth of the tracer
flow in a fractally heterogeneous porous medium.
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