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Summary: Transport of biologically reactive dissolved solutes in a porous medium including 

a biofilm phase is a complex process involving a wide variety of scales (from the bacteria 

scale to the aquifer heterogeneity scale) and processes (hydrodynamic, physicochemical and 

biochemical). The objectives of this work are 1) to derive a two-equation macroscopic model 

for bio-reactive transport at the Darcy-scale from the pore-scale description using the volume 

averaging method and 2) to compare the results of this model with those of a recently 

developed one-equation model but limited to local mass equilibrium conditions. 
 

 

1 INTRODUCTION 

Mathematical modelling of transport in porous media of organic chemical species in 

presence of a bacterial population growing in the form of biofilms is an important area of 

research for environmental and industrial applications such as the treatment and the 

remediation of groundwater contaminated by organic pollutants, the study of bioreactor 

systems, ... Biofilms, which are composed of bacteria and extracellular organic substances, 

grow on the pore-walls of a porous medium. Biodegradable organic solutes are converted into 

biomass or other organic compounds by the bacterial metabolism. Accurate numerical models 

are needed in order to predict effectiveness of bioremediation methods or to optimize bio-

processes occurring in engineering systems. This problematic has led to a broad literature 

(e.g., [1]). One of the challenges in the development of such models is the variety of scales 

involved in the studied phenomena as shown in Figure 1. In this work, we focus on the 
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upscaling of the reactive transport processes from the pore scale to the Darcy scale.  

 

 
 

Figure 1. Pore scale and Darcy scale in a porous media with a biofilm phase. 

 

 

We consider an organic solute, denoted A, which is classically transported by convection 

and diffusion in the fluid phase (where the reduced concentration field is denoted Ac γ ) and by 

diffusion within the biofilm phase (in which the reduced concentration field is denoted Ac ω ). 

The reaction of biodegradation takes place in this last phase. A classical Monod kinetics 

expression will be adopted to describe the biological reaction (e.g., [2] or [3]). Generally, 

biodegradation kinetics involves two chemical species: the source of carbon – organic solute 

A - and the electron acceptor - e.g., dioxygen or nitrate, denoted B. For the sake of simplicity, 

we assume in this study that the electron acceptor is in large excess so that the consumption of 

solute A is governed by a simple Monod reaction term, even if such a simplification is not 

necessary regarding our theoretical development. The fluid and biofilm phases are assumed to 

be continuous and homogeneous except on the phase boundaries. The third phase, the solid 

phase, is considered to be passive relatively to the transport phenomena (no surface reaction). 

There is a feedback between solute transport and bacterial growth phenomena. In order to 

uncouple their governing equations, a quasi-steady assumption is considered based on the 

large difference between characteristic time scales of these processes (biomass growth is 

usually very slow compared to transport phenomena, e.g.: [4]). Under these assumptions, the 

pore-scale transport problem for solute A can be written as follows (all equations are 

presented in dimensionless form): 
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with the boundary conditions: 
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ijA  represents the interface between the i -phase and the j -phase (each phase is identified by 

a greek letter - see Figure 1: γ  for the fluid phase, ω  for the biofilm phase and κ  for the 
solid phase). '

AK ω  is the dimensionless half saturation constant (reduced by the reference 

concentration 0c , the same used to obtained the reduced concentration fields Ac ω  and Ac γ ), 

AD  is the ratio between the molecular diffusion coefficients within the biofilm phase and the 

fluid phase, and '

γv is the dimensionless velocity field (reduced by γv ). 

Here Pe  and Da  are the Péclet number and the Damköhler number associated to the 

transport phenomenon. They take the classical forms: 
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in which γv  is the Euclidian norm of the velocity field γv , AγD is the molecular diffusion 

coefficient in the fluid phase, Aωµ  is the maximum rate of substrate uptake, ωρ  is the 

microbial concentration (mass of active bacteria per unit of volume of biofilm), AK ω  is the 

half-saturation constant and l  is a reference length (e.g.: mean grains diameter, mean biofilm 

thickness, …).  

Upscaling of transport equations from the pore scale to the Darcy scale is conducted using 

the volume averaging method (e.g.: [5]). Microscale equations are averaged over a 

representative elementary volume V , which must satisfy the constraint of separation of scales 

(Figure 1). The resulting averaged quantities are the intrinsic averaged concentrations. In the 

γ -phase, it is defined as 
 

 
1

A A

V

c c dV
V

γ

γ
γ γ

γ

〈 〉 = ∫  (5) 

 

where Vγ  represents the volume of the γ -phase contained in the averaging volume V . A 
similar definition holds for the ω -phase. The resulting macroscopic conservation equations 

make appear some effective coefficients that remain dependent of the microscopic properties 

of the medium. In fact, some porescale `closure problems' are mathematically stated relating 

the pore-scale physical characteristics to these effective properties. Heretofore, different one-

equation averaged transport models have been rigorously derived but under restrictive 

assumptions: either for local mass equilibrium conditions [7] or for limiting transport 

mechanisms in non equilibrium conditions [8,9]. Actually, in the general case, the volume 

averaging process of the microscale transport equations leads to a two-equation model at the 

macroscale, where a separate upscaled equation is developed for each phase (e.g.: [10], [11]). 

Such a formulation is the subject of the current work. This description is the more complete 
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that can be obtained with such an approach, but a relatively high number of macroscopic 

effective coefficients has to be determined. In the following section we will briefly discuss the 

theoretical development of this Two-Equation Model, hereafter referred to as TEM model. In a 

second part, comparisons will be carried out between this upscaled model and one of the one-

equation models derived previously [6]: the Local Equilibrium Assumption (LEA) model [7]. 

 

2 THEORETICAL DEVELOPEMENT 

In the general case, concentration gradients may occur at the pore-scale in both phases, fluid 

and biofilm. In these conditions, the formalism of the volume averaging leads to a two-

equation transport model at the Darcy scale. In addition to the classic constraint of separation 

of scales and in order to linearize the averaged reaction term, we need to assume that the 

spatial variations of deviation concentrations at the microscale (denoted Ac γɶ  and Ac ωɶ ) are 

small compared to the value of the intrinsic averaged concentration ( Ac
γ

γ〈 〉 and Ac
ω

ω〈 〉 ). 

Except of the reactive term, the problem stated with these assumptions is similar in essence 

with those studied by Cherblanc et al. [10] in the case of miscible transport of pollutant in 

heterogeneous porous media or by Ahmadi et al. [11] in the case of solute transport with 

adsorption.  
 

The upscaling of the pore-scale problem (equations (1) to (4)) from the spatial operator 

defined in Eq. (5) and the use of averaging theorems (e.g. [5]) lead to unclosed average 

equations of transport defined at the Darcy scale, which still involve microscopic quantities 

(e.g. the microscopic reduced concentration fields Ac γ  and Ac ω ).  

In order to close these transport equations, we need to establish a link between the microscale 

quantities and the macroscale quantities. The classical form of the closure assumptions 

associated with the volume averaging process is in such a case (e.g.: [9], [10]): 
 

 ( )A A A A A A A A A Ac c c c c r c cγ γ ω ω γ
γ γ γ γγ γ γω ω γ ω γ= − 〈 〉 = ⋅∇〈 〉 + ⋅∇〈 〉 + 〈 〉 − 〈 〉b bɶ  (6) 

 ( )A A A A A A A A A Ac c c c c r c cω γ ω ω γ
ω ω ω ωγ γ ωω ω ω ω γ= − 〈 〉 = ⋅∇〈 〉 + ⋅∇〈 〉 + 〈 〉 − 〈 〉ɶ b b  (7) 

 

where Ac γɶ  and Ac ωɶ  represent the concentration deviations and Aγγb , Aγωb , Ar γ , Aωγb , Aωωb , 

Ar ω  are the closure fields, computed from solving three closure problems on a unit cell 

representative of the microscopic features of the medium. 

Upon substituting these closure relations into the unclosed macroscopic equations allows one 

to define the following set of closed Darcy-scale transport equations:  
 

γ -phase:   
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ω -phase: 
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in which Aγγ
*D , Aγω

*D , Aωγ
*D  and Aωω

*D  are the effective dispersion tensors associated to the 

averaged concentrations Ac
γ

γ〈 〉  and Ac
ω

ω〈 〉  in the γ - and ω -phases, *

Aα  is the mass exchange 

coefficient between phases and *

Aγd , *

Aγu , *

Aωd  and *

Aωu are non-classical convective terms. All 

these effective parameters are functions of the above-mentioned closure variables. Indeed, 

three closure problems govern these variables and hence, the effective parameters which are 

defined as functions of integral values of these closure fields. For instance, we have:  

 * ' ' ' '1 1
A A A A
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dA dA
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ωγ γκ
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Such problems are defined on the basis of the equations which govern the deviation fields Ac γɶ  

and Ac ωɶ . Briefly, they are obtained by subtracting the unclosed averaged equations to the 

microscopic equations, equations (1) to (4), and by introducing the closure relations, 

equations (6) and (7). As an example, one of the three closure problems is given below: 

 

Closure problem associated to the source term Ac
γ

γ∇〈 〉  : 

γ -phase:   
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ω -phase: 
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Notice that, in order to ensure unicity of the closure fields (here '

Aγγb  and '

Aωγb ), periodicity 

constraints are imposed at the boundaries. Finally, we have also supposed that γε∇  and ωε∇  

are small in order to simplify the expression of the equations associated to the TEM model. 

Finally, the volume averaging method leads to the general form of the transport equations at 

the Darcy scale, and relates explicitly the values of the effective parameters to the pore-scale 

quantities through the so-called closure problems. Here the developed model is a two-

equation model, which is the most general model which can be developed through this 

approach. In the next section, we will compare the results of this two-equation model with 

those obtained with a Darcy scale transport model also derived from the volume averaging 

technique but under more restrictive conditions: the Local Equilibrium Assumption model. 

3 COMPARISON OF THE TWO-EQUATION MODEL WITH THE LOCAL 

EQUILIBRIUM ASSUMPTION MODEL 

At this point, we have a general macroscopic model describing solute transport in a fluid-

biofilm system which should theoretically include the validity domains associated to the LEA 

model. In order to justify this assumption and validate our development, we compare the 

effective parameters with those of this one-equation model, as developed in [7]. 

The local mass equilibrium assumption underlying the LEA model implies conditions 

close to thermodynamical equilibrium, i.e.: 
  

 { }A A Ac c c
γ ω

γ ω≈ ≈  (21) 
 

Introducing this assumption and summing up macroscopic equations of the TEM model, Eqs. 

(8) and (9), we obtain:  
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where the effective dispersion tensor ,

TEM

A eff

*D  is given by: 
  

 * * * *

,
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A eff A A A Aωγ ωω γγ γω= + + +*D D D D D  (23) 
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This macroscopic transport equation can be directly compared to the LEA model reminded 

below: 

 ( ) { } { }( ) { }( ) { }
{ }, .

A A

A A eff A A

A A

c c
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t c K

γ
γ ω γ γ ω ω ω

ω
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Analogy between both models holds if , ,

TEM

A eff A eff=* *D D . We compare (Figure 2) the evolution 

of the longitudinal component of these two effective dispersion tensors as a function of the 

Péclet number for the same porous medium than previously. Here we consider biochemical 

conditions consistent with the existence of a local mass equilibrium ( 0.1Da = , 
' 1000A AK c

ω
ω ω = , and 0.5A =D ).  

 

 
 

Figure 2. Comparison of the longitudinal dispersion obtained by the TEM model and the LEA model 

 

The TEM model predicts a longitudinal dispersion which is slightly higher than the one 

given by the LEA model in the diffusive transport regime, while it gives a slightly lower 

dispersion in the convective regime. This slight discrepancy is due to the small - but non-zero 

- impact of the reactive term on the dispersion tensor in the TEM model (in the LEA model, 

this term is directly discarded in the writing of the closure problem associated to the 

dispersion tensor). However, the agreement between the two models is well satisfactory.  

4 CONCLUSION 

In this paper, we have presented a two-equation macroscopic model describing solute 

transport in porous media hosting biofilms even for systems that are not at equilibrium. This 

study extends previous works conducted on this issue. A preliminary theoretical validation is 

presented based on a comparison between the TEM model and a one-equation model 

previously developed but under restrictive assumptions (local mass equilibrium). For this 

limit case, the one-equation behavior is well recovered by the TEM model. Note that an 

extensive numerical validation of the TEM model has been carried out by comparison 

between direct numerical simulations and upscaled simulations (data not shown) which 

confirm these observations and precise its validity domain.  

Diffusive 
transport 

Convective 
transport 
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