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Summary. This work presents a sign–preserving continuous finite element model (FEM)
for advection, incorporating an enhanced flux corrected transport method (FCT) with a
high order solution founded in the characteristic based (CB) FEM. The method extends
the inherent correction process of the FCT by assuming a general predictor–type positive
solution that allows the inclusion of precedent discarded contributions.

1 INTRODUCTION

Sign–preservation is essential for an algorithm to avoid unphysical computed values of
a positive definite property transported by a fluid flow. In Ref. 6 we introduced a sign–
preserving finite element model for advection problems (NFEM, in short form), retaining
the continuous nature of the FEM. The method integrates the flux corrected transport
technique (FCT) 1,4,10,11 with the (high order) characteristic based (CB)FEM 7,12,13.

This work proposes an extension of the correction procedure, allowing the successive
reduction of the rejected element contributions. To achieve these reductions, we extend
the NFEM to include a general predictor (positive preserving) solution. The format of the
modified method has four leading tasks, (a) Computation of a high order solution (HO) by
the CB-FEM, (b) Computation of a predictor sign-preserving solution, (c) Calculation of
the anti-diffusive contributions by limiting the difference between contributions of method
(a) and method (b), and (d) Computation of final, sign-preserving, corrected solution, by
adding the limited contributions to the predictor solution.

As a first natural approach, an iterative procedure using previous corrected solution
as predictor solution for the step (b) is tested, showing a considerable improvement after
few loops. A pioneering use of this idea in FD can be found in Ref. 8, although the
iterative process is close to the iterative–FEM presented by Kuzmin and Moller 3, differing
mainly in the initial predictor method. The NFEM uses a low order solution of upwind
type, independent of the CBS-FEM algorithm. Its (nearly) minimum diffusion to assure
positivity helps to a faster reach of the desired tolerance of discarded contributions.
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2 THE NON–OSCILLATORY FEM MODEL

2.1 Model problem

The model problem is the advective–source transport equation

∂B

∂t
+ ∇ · (uB) + R = 0 in Ω , t ∈ [t0, T ] , (1)

with boundary conditions
B = B(X, t) on Γ−

B (a) ,

Bu · n = qB(X, t) · n on Γ−
q (b) , (2)

Γ− = Γ−
B ∪ Γ−

q , Γ− = {X ∈ Γ : (u · n) ≤ 0}

and initial conditions
B(X, t0) = B0(X) in Ω , (3)

where B is a scalar transported by the advective velocity field u, R = R(B, X, t) is a
source, (X=(xl), l=1, d), Ω is a domain in Rd bounded by Γ = Γ− + Γ+, d is the number
of space dimension, B, B0 and qB are known (the latter a vector) functions, and [t0, T ] is
the time interval. The inflow boundary is denoted by Γ− while Γ−

q includes slip condition
if suitable, Γ+ = {X ∈ Γ : (u · n) > 0} is the outflow boundary and n is the outward unit
normal to the boundary.

2.2 The general correction method

We start the formulation by introducing a high order continuous finite element method
for the model problem. The method written in matrix form is

1

∆t
Mc∆B = RH , (4)

where ∆t = tn+1 − tn is the time step, B represents the high order solution, ∆B =
Bn+1 − Bn and superscripts indicate time level. RH is the right hand side for the high
order algorithm and Mc is the consistent mass matrix. Bn is such that Bn

i ≥ 0 for all node
i. Next, we introduce a predictor–type monotonic (or at least definite positive) method.
In matrix form,

1

∆t
M′

L∆b = RL , (5)

where b is the corresponding unknown and ∆b = bn+1 − Bn. RL is the right hand
side computed for the predictor algorithm and M′

L is a conservative diagonal matrix that
ensures sign preservation. Now, Equation (4) is written as

1

∆t
M′

L∆B = RH +
1

∆t
(M′

L −Mc) ∆B . (6)
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By subtracting Equation (5) from Equation (6) and by replacing Eqs. (5) and (4) on the
rhs, an alternate form of value in the implementation is the identity

Bn+1 = bn+1 +

E
∑

j=1

(M′
L)−1{M′

L(Bn+1 − bn+1)}j . (7)

The finite element method subdivides the domain Ω by E elements Ωj , (j = 1, E), such
that Ω =

⋃

Ωj . In the identity (7), the assembling of the product {M′
L(Bn+1 − bn+1)}j

for each j element is explicitly written, and extended over the total number of elements.
The HO–FEM solution (Equation (7)) is written for a node i as

Bn+1
i = bn+1

i +

e
∑

j=1

Aj = bn+1
i +

e
∑

j=1

(AH
j − AP

j ) . (8)

where Bi at time (n+1)∆t results from updating the predictor solution at time (n+1)∆t

by the sum of Aj , the element contributions to node i extended over e, the total number
of elements j surrounding i. The element contribution is the difference between that
obtained by the HO solution, AH , and that obtained by the predictor scheme, AP . The
monotonicity– (or at least sign–)preservation for the predictor method, along the lines
of Smolarkiewicz and Grabowski 9 for monotone FD schemes, is formally imposed by
bounding the new solution bn+1

i as

Bmin
i ≤ bn+1

i ≤ Bmax
i (9)

such that bn+1
i ≥ 0 for all i. The procedure concludes by computing the enhanced HO

solution B̃i as

B̃n+1
i = bn+1

i +

e
∑

j=1

Ãj = bn+1
i +

e
∑

j=1

{cA}j , (10)

where the cj ’s are elementwise correcting functions depending on nodal HO solution, nodal
predictor solution and element contribution to the node. The implementation of the cor-
rection procedure is analogous to the FCT method, and can be established by considering
identity (7). Therefore, the contribution of element j is Aj = (M′

L)−1{M′
L(Bn+1−bn+1)}j

(see details in Ref. 6). The simplest predictor solution is a low order monotonic solution
(LO). The FEM–FCT method 4 employs the Taylor–Galerkin finite element method 2,5

as high order option and the Taylor–Galerkin algorithm with lumped mass matrix plus
added diffusion as the corresponding low order scheme. LO scheme of the FEM–FCT
reaches positivity with supplementary diffusion of the type α(Mc − ML)Bn, where α is
a diffusion coefficient to be specified. Instead, the NFEM is designed by the combina-
tion of a characteristic based high order method and a low order method of upwind type
as predictor solution. The high order solution is an abridged version of the complete
characteristic based finite element method formulated in Ref. 6.
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3 AN ITERATIVE CORRECTION

To illustrate the application of the proposed methodology, we present in this section
an iterative option. This option generalize that presented by Schar and Smolarkiewicz 8

by updating bounds every iteration. We introduce the nodal enhanced solution B̃
(p)
i , at

step (p) of an iteration process and at time tn+1, such that

B̃
(p)
i = b

(p)
i +

e
∑

j=1

{c(p)A(p)}j . (11)

The predictor solution is defined as that computed by the correction method in the pre-
ceding (p−1) step. Hence, b

(p)
i :=B̃

(p−1)
i . The iterative method (11), taking into account

the identity (7), is

B̃
(p)
i = b

(p)
i +

e
∑

j=1

c
(p)
j (M′

L)−1{(M′
L)(B(p) − b(p))}j , (12)

where B(p) is the high order solution for iteration (p). For a node i, the HO solution is

B
(p)
i = b

(p)
i +

e
∑

j=1

A
(p)
j . (13)

The A
(p)
j are the contributions rejected in the p−1 step,

e
∑

j=1

A
(p)
j =

e
∑

j=1

{(1 − c(p−1)) A(p−1)}j . (14)

Solution computed by Equation (13) does not preserve positivity, whereas the method
(12) conserves sign.

3.1 Implementation of the procedure

We construct the iteration loop by using the NFEM for the zero iteration. In this step,
predictor corresponds to the LO algorithm.

• Zero iteration calculation, b
(0)
i : Predictor solution by a LO method.

• Initialization (b
(1)
i := B̃

(0)
i ).

Now, each iteration has three basic loops. For the iteration (p),
For p=1, iter; iter: number of iterations,

• Loop over elements
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1. Computation of new bounds (Zalezak criteria 11)

Bmin
i = min

j=1,e

(

Bn
i , B̃

(p−1)
i , Bn

k , B̃
(p−1)
k

)

, ∀ (nodes k 6= i) ∈ j ,

Bmax
i = max

j=1,e

(

Bn
i , B̃

(p−1)
i , Bn

k , B̃
(p−1)
k

)

, ∀ (nodes k 6= i) ∈ j .

2. Computation of rejected fluxes, storing at nodes

e
∑

j=1

A
(p)+
j =

e
∑

j=1

{(1 − c)A}
(p−1)+
j ;

e
∑

j=1

|A
(p)−
j |=

e
∑

j=1

{(1 − c) |A |}
(p−1)−
j

(note that A
(p−1)+/−
j = (M′

L)−1{M′
L(B̃(p−1) − b(p−1))}j).

• Loop over nodes

1. Updating high order solution by using rejected fluxes stored at nodes

B
(p)
i = B̃

(p−1)
i +

e
∑

j=1

A
(p)+
j −

e
∑

j=1

|A
(p)−
j |

2. Nodal correcting functions ci

c
(p)+
i ≤ min



1,
Bmax

i − B̃
(p−1)
i

(

∑e
j=1 A

(p)+
j

)

+ µ



 ; c
(p)−
i ≤ min



1,
B̃

(p−1)
i − Bmin

i
(

∑e
j=1 |A

(p)−
j |

)

+ µ





• Loop over elements

1. Computation of elementwise correcting functions cj

c
(p)+
j = min(c

(p)+
k ), c

(p)−
j = min(c

(p)−
k ) ∀ nodes k ∈ j ,

2. Computation of (p) corrected solution

B̃
(p)
i = B̃

(p−1)
i +

e
∑

j=1

(M′
L)−1{c(p)M′

L(B(p) − B̃(p−1))}j (15)

End iter (p).
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3.2 A long term smooth solution

FCT method can produce distorted solutions for advection of certain smooth profiles, as
the case discussed here (along the lines of that performed in Ref. 8). The initial condition
of the problem is given by a sine function of wavelength λ. This scalar field is transported
a distance of 100λ. The time step is 0.4 s and final time corresponds to 12500∆t (5000
s). The advection velocity field is constant (1 m/s), while average number of nodes
per wavelength is 50. The finite element grid has 10201 nodes and 20000 triangular
elements of base unity and height unity in a [0,100]×[0,100] region. To simulate the
propagation of the profile, periodic conditions were imposed on left and right boundaries.
Results in Fig. 1 correspond to the CB algorithm, NFEM and the iterative NFEM for
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Figure 1: Sine wave experiment. Theoretical and numerical results for the CB–FEM, NFEM, iterative
NFEM (2 iterations), iterative NFEM (4 iterations) and iterative NFEM with prelimiter (2 iterations).
t =12500∆t; ∆t =0.4; ∆x =1.

2 and 4 iterations, superimposed on the analytical solution. Pathology of original flux
correction technique is seen in the asymmetrical results of NFEM, as well as a diffusion
error at the peak of around 40%, while this error for CB–FEM is of around 10%. The
refined amount of rejected contributions given by the iterative method permits a drastic
reduction of diffusion error at the peak (around 25%), a decrease of L∞ error and L2 error,
as well as a nearly entire elimination of asymmetries in the solution (Figure 1). Table 1
comprises the results of the test. The minimal enhancement of solutions by increasing
number of iterations from 2 to 4 is consistent with observations in other tests. Last row of
Table 1 summarizes results for the model with prelimiting technique. This complementary
technique is discussed in Ref. 6. Observe that for free surface environmental flows, long-
term transport of sign-preserving properties is typical.
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Method Bmax Bmin e(L∞) e(L2)·104

FEM–CB 0.9194 -0.9098 0.1752 0.2361
NFEM 0.5966 -0.5970 0.4301 0.5796
NFEM 2 iter 0.7482 -0.7479 0.3063 0.4236
NFEM 4 iter 0.7480 -0.7478 0.3035 0.4182
NFEM 2 iter+prelim 0.7482 -0.7479 0.3063 0.4236

Table 1: Sine wave experiment. Results at 12500∆t. Columns indicate: method, maximum value Bmax,
minimum value Bmin, e(L∞): L∞ error and e(L2): L2 error. ∆t =0.4.

4 CONCLUDING REMARKS

A sign-preserving continuous finite element method accommodates a low order scheme
based on upwinding technique to a high order FEM. This strategy facilitates the use of the
procedure by any high order dispersive finite element method, and does not need tuning
of artificial diffusion of the low order scheme. In particular, the low order algorithm adds
the (nearly) minimum diffusion for positivity. However, classical FCT embedded in the
NFEM restricts the portion of accepted high order element contributions. The extension
proposed in this work replaces low order solution of NFEM by a predictor solution that
satisfies the same requirements. This enhancement permits the desired refinement on
the FCT–based approach, while using the most efficient sign-preserving procedure as the
predictor first choice.

An iterative procedure with a predictor solution computed by the NFEM put the
general correction method into practice. Each iteration reduces the rejected contributions
of preceding correction. The method decreases over–diffusion in the corrected solutions
and compensates distortions of the FCT in long term smooth problems. The model
equipped with an iterative correction has an acceptable extra cost, taking into account
that nearly all error reduction is reached after few iterations. In some discontinuous
problems, auxiliary tools like prelimiting or ad hoc alternative low order schemes are
more beneficial than iterative correction to reduce localized ripples due to non–monotonic
solutions (see details in Ref. 6).
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