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Summary. A probabilistic approach for modeling multi-phase flow with interfacial mass
transfer is presented. With one- and two- dimensional simulations it is demonstrated that
the PDF and Darcy modeling approaches give significantly different results. While the
PDF-approach properly accounts for the long correlation length scales and the concentra-
tion variance in dissolution-driven gravity currents, this phenomenon cannot be captured
accurately with a standard Darcy model.

1 INTRODUCTION

Carbon dioxide sequestration involves the capture and long term storage of CO2 that
would have been emitted into or remained in the atmosphere. Deep saline aquifers in
the sedimentary basins are possible sites for long-term CO2 storage [2, 1]. During the
post-injection phase of CO2 storage, due to the lower density of CO2, the injected CO2

plume migrates upwards and displaces the brine. During this upward motion of the CO2

plume, several CO2 trapping processes take place. In this paper, we focus on solubility
trapping, which occurs due to slow dissolution of CO2 into brine. Convective instability
in the CO2 rich brine leads to the formation of miscible fingers in the brine phase [3]. In
order to upscale such scenarios from pore to Darcy scale, the size of REVs must be much
larger than the finger size. However, if the finger size is of the order of Darcy scale, this
poses a serious limitation on the validity of the Darcy-approach. Even if it is assumed
that a well resolved Darcy based simulation provides a sufficiently accurate description of
the large-scale flow, the presence of fingers puts a computational challenge for field scale
simulations.

To model such unstable flow scenarios, we propose an alternative approach based on
the evolution of a joint probability density function (PDF) of stochastic flow variables.
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This PDF-approach requires Lagrangian evolutions for these stochastic variables. In a
previous paper [4] we developed a stochastic particle method (SPM) for computing the
evolution of joint-PDF of multi-phase flow in porous media. The particles in the SPM
represent inifinitsimal fluid volumes with random flow variables as their properties and
evolve such that their statistics represents the statistics of the physical fluid volumes.

2 STOCHASTIC MODEL

Here we develop the Lagrangian evolutions for the properties of stochastic particles
based on the fine-scale physics of two-phase flow in porous media with interfacial mass
transfer. Note that phase-1 (CO2 phase) always remains in its pure state, but its only
component (CO2) dissolves into phase-2 (brine phase). Furthermore, it is assumed that
the CO2 density is constant and the density of brine weakly depends on the concentration
of dissolved CO2.

2.1 Position

A simple, yet quite general rule for the particle displacement in physical space is

dx∗ = u∗dt +
√

2Γ|u∗|dW , (1)

where x∗ is the particle position, u∗ the particle velocity, Γ a constant and W (t) a vector
valued Wiener process. The first term on the right hand side accounts for the displacement
due to the particle velocity and the second term models the pore scale dispersion with a
dispersion coefficient proportional to the magnitude of the particle velocity.

2.2 Velocity

Dissolution leads to fine-scale variations of the brine density, i.e. the density ρ∗ of the
brine particles varies as a function of the local dissolved CO2 concentration leading to
buoyancy forces within the brine phase. A possible rule for the particle velocity is

u∗ = − kra∗k

Sa∗φµa∗
(∇p+ ρ∗gez) (2)

where kra∗ , Sa∗ and µa∗ are the relative permeability, saturation and viscosity, respectively,
of phase a∗ ∈ {1, 2}. Further, φ is the porosity, p the average pressure, k the rock
permeability and g the gravitational acceleration. Here the density ρ∗ of the CO2 particles
is constant, i.e. ρ∗ = ρ1 and macroscopic capillary effects are ignored.

2.3 Interfacial mass transfer

We model dissolution by mass exchange between CO2 and brine particles. For this
purpose a concentration of CO2 is defined as

c∗ =
m∗c
m∗

, (3)
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where m∗c is the mass of CO2 carried by the particle. Since the CO2 phase remains in its
pure state, c∗ = 1 for all CO2 particles.

2.3.1 Brine particles

The concentration of CO2 in a brine particle can be altered either due to mass exchange
with the CO2 particles (dissolution) or due to mass exchange with other brine particles
(molecular mixing). However, in the present paper the effect of molecular mixing of
dissolved CO2 in brine is ignored. It is assumed that the interfacial mass transfer is
governed by the following first order rate law

dm∗

dt
= −m

∗

τd
(c∗ − ceq) (4)

where τd is the dissolution time characterizing the time scale of dissolution process and
ceq is the equilibrium concentration of CO2 in brine.

2.3.2 CO2 particles

At any location and at any time the mass gained by the brine particles must be equal
to the mass lost by the CO2 particles. Here it is further assumed that at a given time all
CO2 particles of the same ensemble loose mass at a rate proportional to their own. This
leads to the evolution

dm∗

dt
= m∗

ρ2S2

ρ1S1

(c∗|a∗ = 2− ceq)
τd

, (5)

for the CO2 particle. Note that ·|a∗ = 1 and ·|a∗ = 2 denote phase conditional Favre
means.

2.4 Particle densities

For brine phase it is assumed that the particle density is a linear function of the
dissolved CO2 concentration. Thus, the density of a particle can be expressed as

ρ∗ = ρ0
a∗ + δa∗2

ρeq2 − ρ0
2

ceq
c∗, (6)

where ρ0
1 and ρ0

2 are the phase densities in their pure states and ρeq2 is the equilibrium
density.

2.5 Saturation and mean density

If a particle has mass m∗ and volume v∗ (such that ρ∗ = m∗/v∗), the saturation Sα
and the mean density ρα of phase α are defined as

Sα =
〈v∗δa∗α〉
〈v∗〉

and ρα =
〈m∗δa∗α〉
〈v∗δa∗α〉

, (7)
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where α ∈ {1, 2}.

3 BOUSSINESQ APPROXIMATION

In many cases the flow model can greatly be simplified by a Boussinesq approximation,
which implies that density variations are solely due to concentration variations in the
brine (see Eq. (6)) and only needed to be considered in the gravity term. Otherwise,
constants ρ1 = ρ0

1 and ρ1 = ρ0
1 are used. Here in particular, for further simplification,

ρ0
1 = ρ0

2 = constant is assumed.

3.1 Pressure equation and fractional flow

The Boussinesq approximation leads to the continuity equation ∇ ·F = 0, where the
total volumetric flux F = φS1u∗|a∗ = 1 + φS2u∗|a∗ = 2 (for Γ = 0). Substituting for F
using Eq. (2) leads to the elliptic equation (for Γ = 0)

−∇ · {Λ∇p} = gez ·∇
{
kkr1
µ1

ρ1 +
kkr2
µ2

ρ∗|a∗ = 2

}
(8)

for pressure, where Λ = kkr1/µ1 + kkr2/µ2 is the total flow mobility.
To solve transport problems, in particular if this is done with particle tracking, it is

important to have a conservative scheme. To achieve this, we employ a fractional flow
formulation for the particle velocities, i.e.

u∗ =


kr1k

S1µ1φΛ
F +

k2kr1kr2 (ρ∗|a∗=2−ρ1)g

S1µ1µ2φΛ
ez if a∗ = 1

kr2k

S2µ2φΛ
F +

k2kr1kr2 (ρ1−ρ∗)g

S2µ1µ2φΛ
ez −

k2k2
r2

(ρ∗−ρ∗|a∗=2)g

S2µ2
2φΛ

ez if a∗ = 2.

(9)

3.2 Multi-phase flow parameters and time scales

For the numerical simulations in this paper, we chose quadratic relative permeabilities,
i.e. kr1 = S2

1 and kr2 = S2
2 . Since the mass transfer rate due to dissolution depends on

the saturation, it is assumed that τd is a function of CO2 saturation and the relationship

τd =
τ0

S1

(10)

is used. Note that there exist two kinds of buoyant forces in the present case: one due to
the phase density difference, ρ0

2 − ρ0
1 and another due to density fluctuations within the

brine. Estimates of the associated time scales are

τg =
µ2φH

kg(ρ0
2 − ρ0

1)
and τρ =

µ2φH

kg(ρeq2 − ρ0
2)
. (11)
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4 SIMULATION RESULTS

Next we present some one- and two- dimensional numerical results to demonstrate the
difference between the PDF and the Darcy based modeling approaches. In the PDF-
approach the SPM is employed, where a large number of computational particles are
evolved via the Lagrangian equations presented in § 2. The total volume flux is the
solution of Eq. (8), which is solved with a finite volume method. Note that the Darcy
solution corresponds to having decorrelated particle properties in the SPM, i.e. ρ∗ in
Eq. (9) is replaced by ρ∗|a∗ = 2. For the test cases, the post-injection phase of CO2

storage is considered, i.e. a plume of lighter CO2 migrates upwards in a confined aquifer
filled with heavier brine. During the rise of the CO2 plume some CO2 dissolves into the
surrounding phase, which results in a local increase of the brine density, thus leading to
additional gravity currents within the brine phase. In all simulations the parameter τg/τρ
and the viscosity ratio µ2/µ1 are set equal to one. For the dissolution model we chose
ceq = 0.1 and τ0 = 0.1τg.
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Figure 1: Geometry and initial distribution of the phases in (a) 1D test case and (b) 2D test case.

4.1 1D results

Here, a one-dimensional (1D) test case is considered, which represents a simplification
of the rising CO2 plume in a brine aquifer. The geometrical details and initial distribution
of the phases are shown in figure 1a, where h0 = 0.1H and h = 0.2H. At t = 0, particles
of equal mass and volume are uniformly distributed in the domain with c∗ = 1 and a∗ = 1
if 0.1H ≤ z∗ ≤ 0.3H and c∗ = 0 and a∗ = 2, else. A grid with 100 equally spaced
finite volumes (∆z = 0.01H) is employed to discretize the domain and a time step size
of ∆t = 5 × 10−3τg is used (the maximum CFL number in the domain is less than 0.5).
In order to obtain smooth stochastic moments, 50, 000 particles per cell are employed in
average.

Figure 2a depicts the spatial profiles of the conditional Favre mean concentration c =
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c∗|a∗ = 2 at t = τg obtained with the PDF and Darcy approaches. In the trailing region
of the plume there is a significant difference between the average concentrations from the
two approaches. The difference is essentially due to the stochastic formulation of phase-2
particle velocities (see Eq. (9)), i.e. the third term consisting of ρ∗ − ρ∗|a∗ = 2, which is
absent in the Darcy model. The influence of this term can be quantified by the variance

of concentration, i.e. σ2 = c∗2|a∗ = 2− c∗|a∗ = 2
2
. This is shown in figure 2b, where the

time evolution of σ is plotted.
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Figure 2: Comparison of the simulation results obtained with the PDF-approach and the Darcy-model:
(a) Favre mean of the dissolved CO2 concentration at t = τg; (b) Favre standard deviation (σ) of the
dissolved CO2 concentration.

4.2 2D results

Next, we consider a two dimensional (2D) simulation test case, in which an initially
circular plume of the lighter CO2 phase rises upwards surrounded by the heavier brine.
The geometrical details and initial configuration of the phases are shown in figure 1b,
where l = 0.5L, h = 0.25H and r = 0.2L. At t = 0, particles of equal mass and volume
are uniformly distributed in the domain with c∗ = 1 and a∗ = 1 if (x∗− l)2 +(z∗−h)2 ≤ r2

and c∗ = 0 and a∗ = 2 else. The domain is a square (H/L = 1) filled with a homogeneous
porous medium. A uniform orthogonal finite volume grid with 100×100 cells is employed
to discretize the computational domain. The time step is chosen such that the CFL
condition is satisfied everywhere. In order to obtain smooth stochastic moments, 4, 000
particles per cell are employed in average.

Similar to the 1D test case, a comparison between the results obtained with the two
modeling approaches is presented. Figures 3a and 3b depict the total volume flux vectors
at t = 2τg, where a clear difference can be seen between the dissolution-driven recirculation
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zones. The PDF-approach predicts more lateral convection in the trailing region. A
more significant difference can be observed between the concentration fields as shown in
figures 4a and 4b, where the isolines of the Favre mean dissolved CO2 concentration are
plotted at the same time. The difference is mainly due to the stronger lateral convection
in the trailing region with the PDF-approach.
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Figure 3: Total volume flux vectors at t = 2τg obtained with: (a) the PDF-approach; (b) the Darcy-model.
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Figure 4: Favre mean concentration of dissolved CO2 obtained with: (a) the PDF-approach; (b) the
Darcy-model.

7



M. Tyagi and P. Jenny

5 CONCLUSIONS

The potential of PDF-modeling approach to deal with non-equilibrium phenomena due
to dissolution-driven gravity currents was demonstrated. It was shown that the results
obtained with the PDF-approach significantly differ from those obtained with the Darcy-
approach. The reason for this difference is the lack of information about the small scale
dissolution-driven dynamics in the Darcy-model, which is very naturally captured in the
PDF-approach. If the variance of CO2 concentration in the brine phase is ignored, the
PDF and Darcy simulations lead to the same results (except for the numerical inaccura-
cies).
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