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Summary. Numerical modelling of interacting flow processes between roots and soil is 
essential for understanding the influence of different root geometries and types on the hydro-
system and remains a challenging task especially for multiple interacting root systems. This is 
mainly due to the geometric complexity, the coupled physical processes, scale differences and 
the required computational resources. These days, coupled 3D-soil-root models at the plant 
scale are available simulating the water flow along potential gradients within root as well as in 
soil. Although the biological, chemical and physical processes along the soil-root interface 
have not been fully investigated yet, current models suggest strong gradients in water 
potential at the soil-root interface. We develop high-precision models, which capture the main 
small scale features of plant-water uptake (aRoot) but run on the bulk soil scale coupled to 
soil water infiltration (OpenGeoSys). This requires an appropriate combination of the 
geometric models and time stepping schemes to solve both, the plant-water uptake and the 
soil water flow. The three-dimensional root architectures are embedded into bulk soil and the 
water flow is modeled along a network of resistances from the bulk soil along radial soil discs 
towards the root system up to the root collar. The non-linear dynamics of water flow within 
the soil surrounding the roots are covered by a 3D-Richards model. The numerical analysis of 
such coupled multiple-root-soil problems with a high precision involves significant 
computational resources and parallel computing is a way to enable the use of the necessary 
computer power of SMP machines or clusters. Moreover, we apply adaptive time stepping 
with automatic control, which assures model stability and a shorter total run-time as compared 
to a static and steady time-step scheme.  
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1 INTRODUCTION  
Previous research using small scale models for water uptake, e.g. [1][2], indicates that both 

water flow in the soil near the root, but also within the root system itself shape the uptake 
behavior of the plant. Due to the high nonlinearity of radial flow in the unsaturated zone, 
steep gradients of water potential evolve in the immediate vicinity of the root that extracts 
water from the soil. As shown in Schröder et al. 2009 [3], a refined spatial discretization of 
the numerical soil domain around the root can represent the local gradients in soil water 
potential. For an efficient computing performance, Schneider et al. 2009 [4] separated the 
microscopic soil water flow towards the root segment from the water flow in the bulk soil by 
the use of cylinder elements and applied an approximated analytical solution of the Richards 
equation [5][6][7]. We couple this model, in the following called aRoot [4], with the 
parallelized 3D-Richards model of OpenGeoSys (OGS) [8][9] to simulate the non-linear 
dynamics of water flow within the soil together with the root water uptake. 

The coupling of such existing source code requires an interdisciplinary knowledge in 
computer science such as an understanding of the basic program structure, data and control 
dependencies, and most important the awareness of the governing scientific processes. 
However, all are indispensable for a tool coupling project to be successful and an 
interdisciplinary collaboration is essential to enable efficient coupled code interactions, 
especially in terms of high performance computing (HPC) and when three-dimensional 
problems on complex geometries are faced. In this paper, we present a straightforward 
software coupling technique of two independent code structures, for HPC environments of 
coupled water flow in and around a root network (Section 2). 

In cases that numerical simulations are limited by the required computational resources, a 
parallel processing can help to overcome this limitation. However, parallelization is a way to 
improve performance but doesn’t guarantee necessarily robust and stable results or efficient 
solution procedures and memory management. We introduce theory based automatic controls 
for nonlinear equations such as P (proportional feedback) or PI (proportional and integral 
feedback), which permit stable and efficient time stepping [10,11] for numerical solver. 
Technically, the primary aim of the present work is to investigate the functionality and 
performance of such PI controls (Section 3) applied to the governing Richards equation for 
coupled root-soil models.  

Plant root systems vary greatly in form and morphology, not only between species, but also 
between individuals of the same species. This paper contributes to answer the question, how 
this variety influences the expected uptake pattern at the plant community scale. By 
combining the local features of root water uptake and the dynamics of water flow in soil, 
several hypotheses on soil-plant-interaction can be tested at the scale of interest. Studying 
these processes at such a high level of complexity, we aim to investigate the validity of 
common root water uptake approaches at the community scale. Neglecting the local flow 
processes around and within individual root segments, such water uptake models rely namely 
on the spatial distribution of roots and a simplistic water stress function [12]. 
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2 COUPLING OF THE ROOT AND SOIL WATER MODEL FOR HPC 
In this section we describe the coupling between two software tools, one simulating the 

root water uptake (aRoot) and the other one simulating flow in soil by the use of the 3D 
Richards equation (OGS). Furthermore we extend the coupling procedure to simulate systems 
with multiple roots on different locations to be able to analyze root systems with multiple 
roots. 

2.1 The Richards flow model  
We make use of the classic Richards equation to model the unsaturated flow in soil, which 

can be written as 
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with φ porosity, ρl liquid density, μl liquid viscosity, pc capillary pressure, pw water 
pressure, Sl saturation, k the intrinsic permeability, krel relative permeability and g gravity 
constant.  

2.2 The hydraulic root water uptake model 
The root water uptake model calculates the sink term for the bulk soil water flow model 

that is based on the Richards Equation (previous section). Within our root water uptake 
approach two specific flow domains are modeled: (a) the radial soil water flow from the bulk 
soil towards the root segment and (b) the water flow along the root system up to the root 
collar. These two domains are coupled by the fluxes at the soil root interface where the water 
entering the root segment is equal to the soil water discharge from the soil disc.  

Within the root system, our hydraulic model approach distinguishes two pathways: the 
radial flow entering the roots through the root cortex and the epidermis (Jr) and the axial flow 
(Ja) along the root xylem tubes (Fig.1). Both paths are characterized by their specific 
hydraulic properties where each root segment is modeled as a series of radial and axial 
conductances. The outer boundary conditions are the bulk soil water potential and the 
transpirational demand at the root collar. The whole system is solved for the soil water 
potential at the soil-root-interface for all root segments. Solving such nonlinear systems with 
n equations in n unknowns requires a multidimensional root-finding algorithm that is 
provided by the free GNU Scientific Library. 

2.3 The coupling scheme 
The plant-water uptake model operates on a fine and precise line element network which 

represents the detailed geometry of the root system (Fig.1, left). The root system itself is 
created using a 3D root generator [13]. These roots are not growing anymore after the 
generation and geometrically static during the simulation. Obviously, modelling can therefore 
only be applied to shorter time periods where the growth of plants and roots can be neglected.  
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Beside the plant and root specific parameters, aRoot requires the information of the bulk 
soil water content which is the result provided by OGS but for the complete finite element 
mesh, i.e. pressure values for each mesh node of the soil model domain. Therefore, we 
developed a mapping function which links the geometric root network with the geometric soil 
model. The box-shaped soil model itself is a structured finite element mesh with hexahedral 
elements (Fig.1) and is created around the roots at the very beginning when the coupled 
simulation is executed. After mapping, the geometric relations between both models are 
stored i.e.  

• nearest node of the soil model for each node of the root model,  
• in which element of the soil model a root voxel is placed as well as  
• how many and which root segments cross each element of the soil model (Fig.1 right).  
The latter is needed for the effect of root segments occupying a certain soil volume, which 

decrease the porosity by the corresponding fraction of volumetric root content. Therefore we 
create a new material group for each cell with a decreased porosity. After the geometric 
coupling, it is unproblematic to assign spatial distributed data from and on both sides.  

Figure 1 illustrates that the two software tools only have to exchange source/sink terms and 
soil water potential hs, which is done for each time step (Section 4.1). 

 
Figure 1: Coupling Concept between aRoot (serial) and OGS (parallel). 

2.4 The coupling interface 
The coupling interface is designed for a multithreading environment and needs at least a 

dual core CPU to ensure a robust “forking” of the processes. When a process forks, it creates 
a copy of itself by generating a child thread from the parent thread with a separate address 
space. Under Linux-like operating systems, the parent and the child processes can tell each 
other apart by examining the return value of the fork() call (pid = fork(), pid=0 for the child 
process). Both the parent and child processes include the same code segments, but execute 
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independently of each other. We use these characteristics to handle the work flow of both 
tools as shown in Fig. 2. 

 
Figure 2: Work flow of the coupling interface for HPC environments. 

For dealing multiple plants we use additionally a modified copy of the aRoot source code 
called “mRoots”. This maps an additional root network for each additional plant with its 
parameters and properties at a different position within the soil. The parent, i.e. aRoot, calls 
the mRoots executable consecutively for each additional root network.  The source term file 
created by aRoot will be extended with the new sources. As long as the multiple root 
networks are modeled one after each other, no special handler is required to manage the 
mRoots implementation. The coupling procedure between mRoots and OGS is equivalent to 
the description in section 2.3. 

3 ADAPTIVE TIME STEPPING WITH AUTOMATIC CONTROL 
Practically, fixed time step sizes usually does not satisfy the stability and efficiency 

requirements in solving problems that exhibit nonlinearity in material properties and 
boundary conditions. As long as aRoot provides OGS with time-dependent source terms a 
static time step model is difficult to predict, especially because the complex root network 
geometries provide distributed and varying sink terms of same complexity within the domain 
of the soil model. The time step scheme itself is provided and organized on the OGS side 
since the results of root model only change when the soil water pressure changes. 

For the Richards model, different kinds of time stepping methods can be found in the 
literature like e.g. heuristic stepping methods [14] or empirically based adaptive scheme with 
high order time integration for their transformed Richards equation [15]. The first 
mathematically based time stepping method for Richards equation was developed by Kavetski 
et al. [16] using the approximation of the local truncation error.  
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The PI time control method is originally developed for the numerical method for solving 
time dependent nonlinear PDEs with high-order finite difference schemes for time 
discretization and with the Newton-Raphson method for the solution of nonlinear PDEs 
[10,11]. In the following, we will briefly describe the implemented adaptive time stepping 
with automatic control for solving the nonlinear partial differential equation (PDEs) of 
Richards flow for soil models. A more detailed description is given by Wang et al. 2009 [17]. 

The fluid mass balance equation can be derived from the mass conservation law. 
Moreover, Wang et al 2009 [17] derived a corresponding weak form and discretized it in the 
finite element space with Galerkin procedure, which leads to the ordinary differential equation  

fKppM =+&  (2) 
where the mass matrix is denoted by M, the Laplace matrix by K, and the right hand side 

vector by f , and their definition can be find in [17].  
For the implementation of the automatic time stepping with automatic control for hydraulic 

processes, we use the backward Euler method to approximate the solutions of ordinary 
differential equations (2). The temporal discretization can be written like 

[ ] fppKppM =−++Δ− ++ nnnn t )1(/)( 11 αα  (3) 
where α∈[0, 1] indicates a relaxation parameter, n the current time step and  the time 

step size.  
tΔ

With the Picard method we can linearize the equation and for each Picard iteration i+1. 
The solution of equation (3) is related to the previous Picard iteration i and given by 
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Now we make use of the PI (proportional and integral feedback) [18] classic time control 
method, which should provide a stable and efficient time stepping. The idea of automatic PI 
bases on the elementary local error control theory [18,11] and in combination with the 
predictive control presented by Gustafsson [18] the next time step size Δt+1, can be predicted 
by the use of a time step size factor η with 
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Restrictions are introduced in modern controls to handle exceptions and we employ the 
restrictions presented in RODAS, the Rosenbrock solver for stiff ODEs (c.f. [11]) to apply 
them for our model equations (4). The first time step size factor η1 with restrictions is given 
by (c.f.[11]) as 
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with default restrictions for step size selection c1=1/6, c2=5.0 and a safety factor in step 
size prediction with a default value cf=0.9. ζ denotes the error excess, i.e. 
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where ε is the error between the current and previous solution of a Picard iteration i+1, er 
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the relative tolerance and eA the absolute tolerance to avoid zero entries. 
The second time step factor presented by Gustafsson [18] can be calculated by 
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In the present study, the backward Euler method and the Picard method are utilized for the 
temporal discretization and linearization. The error ε (7) is calculated during each Picard 
iteration step but only the value of the converged Picard iteration is applied to predict the time 
step size. Within the finite element context, nodal solutions are obtained and the error excess ζ 
is calculated at each element node as well. Finally, we apply the Euclidean or energy norm to 
replace ζ with the norm of ζ. 

4 RESULTS AND CONCLUSIONS 
A coupled root-soil model, combining a serial root model and a parallelized soil model 

controlled by automatic adaptive time stepping, was developed to provide a computational 
effective insight into the below ground interaction of water uptake between multiple root 
systems sharing the soils water resources. To assign appropriate tolerance factors (er, eA), it 
has be taken into account that the time step model has to suit both, the soil water model (3D-
Richards flow) and the temporal variability of the source/sink terms to ensure an appropriate 
water withdrawal. Fig. 3 exemplarily shows on the left side a model result (saturation) after 
half day of water uptake in a sandy soil with three different roots. The right side of Fig. 3 
depicts the according automatically produced time step scheme. The time step sizes Δt 
decrease due to growing sharp gradients next to the roots and slow convergence of the 
solution, respectively. During the relaxation periods of the soil water pressure, i.e. less or no 
contribution of sources to the pressure depressions, Δt increases.  

 
Figure 3: Left: Saturation distribution in sandy soil after ½ day root water uptake (s.[19]). Right: The appropriate 

result of the adaptive generated time step scheme (er =1.0e-6 eA =1.0e-9). 
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