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Summary. Several centrifugation scenarios for the determination of soil parameters for
saturated-unsaturated flow in porous media are discussed. Only global characteristics
of the infiltration process in the sample are required. These characteristics can be the
rotational momentum, the gravitational center, the mass of water in the sample, or the
mass of expelled water measured at known time sections. These simple measurements can
be used because of the application of an accurate and efficient numerical solution in the
present paper. The mathematical model of infiltration is represented by Richards strongly
nonlinear and degenerate equation expressed via the Van Genuchten-Mualem ansatz for
the soil parameters in the unsaturated zone. The identification process is realized in an
iterative way applying the Levenberg-Marquardt method.

1 INTRODUCTION

To predict the flow and solute transport in soils concerns the soil hydraulic properties
in terms of soil parameters which are the input data in the governing mathematical model.
This model is expressed in terms of saturation and pressure head via Richards equation,
which is a nonlinear and degenerate parabolic equation with free boundaries between
saturated and partially saturated zones, and between the dry zone and partially saturated
zone. The soil retention and hydraulic permeability functions linking the saturation and
pressure head are expressed using the Van Genuchten-Mualem ansatz by means of soil
parameters. The measurement of capillary pressure curves with a centrifuge was initiated
in [2]. With the development of more efficient numerical modeling this method became
more popular in the last decades. A more detailed overview on this topic can be found in
[4] (see also citations there). Recently, the method of centrifugation has been applied in
[1] and [5] where the equilibrium analysis at a set of rotational speeds has been used for
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Jozef Kačur, Benny Malengier and Hanka Budačová

the determination of soil parameters. In [5], the distribution of saturation in equilibria
(linked with the correspondent rotational speeds) are measured via electrical signals from
electrodes installed in the sample.
The presently used centrifugation scenarios are closely related with the available numerical
models of the infiltration process during centrifugation. The solution of the mathematical
model based on Richards equation has a sharp front at the interface between partially
saturated and dry zones in the sample. Furthermore, the free boundary between the fully
saturated and partially saturated front is difficult to identify (when they are expressed in
terms of saturation). It is a difficult task for numerical approximations to supply accurate
results as needed in the determination process of model parameters. Our main goal in
this paper is to present a new approximation method which is accurate and efficient to
supply us with the computation of global characteristics such as: rotational momentum of
infiltrated water in the sample, gravitational center of the water, and the time evolution
of input and output water in the sample. The considered measurements do not include
pointwise saturation or head distributions over the sample. This makes the determination
process more difficult since the sensitivity of global characteristics on soil parameters could
be small, and moreover, the numerical error could shadow it. Therefore the numerical
method should be accurate and efficient.
Here, we present a centrifugation scenario in which water infiltrates into an originally dry
sample from a water chamber situated before the sample. In this scenario we have a fully
saturated zone, a partially saturated zone and the dry zone of the sample. Following the
water movement in this system gives us a complex map of the infiltration process and
representative data of the global characteristics.
The presented mathematical model and its numerical realization can be applied in many
different centrifugation scenarios. The accurate numerical approximation is based on the
following attributes:

• application of the mathematical model for the evolution of the wetness front (in-
terface between partially saturated and dry region), which we have developed in
papers [1] and [3]

• application of moving grid points which significantly increase the numerical accuracy
and effectiveness

• numerical modeling of the free boundary between saturated and partially saturated
zone, based on global water mass balance

• expressing the Richards equation locally in terms of saturation and locally in pres-
sure head depending on the distance to both free boundaries.

In Section 1 we introduce the mathematical model. In Section 2 we present the numerical
method used, while numerical experiments are discussed in Section 3. There, in Exper-
iment 1 we present the solution of the present centrifugation scenario. In Experiment 2
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and 3 the soil parameters are restored from simulated global characteristics applying the
well-known iteration process of the Levenberg-Marquardt (LM) method.

2 MATHEMATICAL MODEL

We consider a one dimensional dry sample in the form of a tube which starts at the
distance r = r0 from the center of the centrifuge and ends at the distance r = r0 + L. At
position r ∈ (r0 − ℓ0, r0) of the centrifuge a water chamber is placed. The saturated flow
in porous media under centrifugation is modeled by Darcy’s equation and for unsaturated
flow by Richards equation,

Ks ∂r

[(

∂rh− ω2

g
r
)]

= 0, in saturated region h ≥ 0,

∂tθ = Ks ∂r

(

k(θ)∂rh− ω2

g
r
)

, in unsaturated region h < 0,
(1)

where h is the piesometric head, θ is saturation of the porous media, ω is the angular speed
of rotation (in radians per second), Ks is the saturated hydraulic conductivity, g is the
gravitational constant and function k(θ) is the hydraulic conductivity in the unsaturated
region (see, e.g. [5, 1] ). Denote by u = θ−θr

θs−θr
the effective saturation where θs is the

volumetric water content at saturation and θr is the residual volumetric water content.
We have u ∈ (0, 1), since θ ∈ (θr, θs). The soil hydraulic properties are represented by
empirical expressions (see [Van Genuchten])

u =
1

(1 + (γh)n)
m , h ∈ (−∞, 0), k(u) = u1/2

[

1−
(

1− u1/m
)m

]2

(2)

where m = 1− 1/n, n > 1 and γ = −(21/m − 1)1−m/hb are empirical soil parameters with
hb the bubbling pressure. Hence, the flow in the unsaturated region can be rewritten in
the form

∂tu = ∂r

(

D(u)∂ru−
ω2

g
k(u)r

)

, (3)

where

D(u) = −
Ks

(n− 1)γ(θs − θr)
u1/2−1/m(1− u1/m)−m[1− (1− u1/m)m]2. (4)

Equation (3) is strongly nonlinear and degenerate. We note that D(0) = 0, D(1) = ∞.
As a consequence of these facts the propagation of the wetness front into the dry region
will proceed with finite speed (i.e. there appears an interface or free boundary). The first
equation in (1) can be integrated and we obtain

h(r) =
ω2

2g
r2 + C1r + C2.

The integration constants can be determined from boundary conditions. In the process of
centrifugation the water from the reservoir is pushed to the dry region of the sample and
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creates saturated and unsaturated subregions in the sample. Denote by s1(t) ∈ (0, L) the
free boundary which separates the saturated and unsaturated regions in the sample. We
also denote by s2(t) the free boundary ( s1(t) < s2(t) ∈ (s1, L)) separating the partially
saturated zone from the dry zone. We can easily determine

h(r0, t) =
ω2

2g
ℓ(2r0 − ℓ), h(s1(t)), t) = 0,

since the piesometric head at r0 is equal to the pressure of water from the reservoir (
(r0 − ℓ(t), r0)) and the piesometric head on the interface r0 + s1(t) is zero.
Then, for r ∈ (r0, r0 + s1(t)) we have

h(r0 + y) =
ω2

2g
[y2 − y(

1

s1
ℓ(2r0 − ℓ) + s1) + ℓ(2r0 − ℓ)], (5)

with the flux

q(t) = Ks
ω2

2g

1

s1(t)
[2r0s1(t) + s1(t)

2 + ℓ(t)(2r0 − ℓ(t))], (6)

where ℓ(t), s1(t) have to be determined. Since the flux of water along (r0, r0 + s1(t)) is
constant, it follows

ℓ̇(t) = −q(t) := f1(ℓ, s1), (7)

where q is from (6). Now, we construct the model for ṡ1(t). Again from mass balance
reasons we deduce that the flux q(t) is used to increase the water content in the saturated
and unsaturated subregions. The crucial point is to obtain the flux qint(t) entering the
unsaturated subregion x ∈ (r0 + s1(t), r0 + s2(t)). We note that u(s2(t), t) = 0, ∀t and
u(s1(t), t) = 1. Then u in the unsaturated region is governed by (1) with (s1(t), s2(t)) the
moving domain of the solution (we shift the original domain by r0). We transform it to a

fixed domain using the transformation y = x−s1(t)
s2(t)−s1(t)

. We denote by ū(z, t) := u(x, t) and
for simplicity we keep the notation u instead of ū. Then,

∂tu(y, t) =
Ks

ss(t)2
∂y

(

D(u)∂yu− ss(t)k(u)
ω2

g
(r0 + s1(t) + y ss(t))

)

(8)

+ (ṡ1(t)(1− y) + ṡ2(t)y)
1

ss(t)
∂yu

where ss(t) := s2(t)− s1(t), with boundary and initial conditions

u(0, t) = 1, u(1, t) = 0; u(y, 0) := u0(y).

To model the interface s2(t) we follow [1] (see also [3]) where problems similar to (8) have
been studied. For this purpose we have to compute

lim
z→0

D(z)

zp
= m2, where p = 1/2 + 1/m.
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Then the model for the evolution of s2(t) reads as follows

ṡ2(t) = −
Ksm

2

p(θs − θr)γ(n− 1)

1

ss(t)
∂yu(1, t)

p, where p = 1/2 + 1/m. (9)

Now, the solution of (8), (9) defines a flux qint(t). Finally, we close our system with the
mass balance condition q(t) = ṡ1(t) + qint(t) from which we have

ṡ1(t) = q(t)− qint(t) (10)

where q is from (6) and qint(t) is the flux of the solution at y = 0 of the model (8),(9) with
the initial and the boundary conditions as above. Now, the final system (7)-(10) can be
solved by approximating it with a corresponding ODE system, using a space discretization
(MOL method).

3 NUMERICAL METHOD

The 1D mathematical model results in a coupled system of PDE and ODE (7)-(10).
We apply now space discretization, and solve the resulting ODE system (MOL method).
Let

0 = y0 < y1 < . . . < yi < . . . < yN = 1; α0 = 0, αi := yi − yi−1, i = 1, . . . , N.

be the grid points in the fixed domain y ∈ (0, 1). This corresponds to the moving grid
points xi(t) = s1(t) + yi ss(t) in the sample. We integrate (8) over Ii := (yi − αi/2, yi +
αi+1/2), ∀i = 1, ..., N − 1 and denote by ui(t) ≈ u(yi, t), ∀i = 1, . . . , N − 1. We
approximate ∂tu(y, t) ≈ u̇i(t) in the interval Ii, and also

∂yu|y=yi+1/2
≈

ui+1(t)− ui(t)

αi+1
=: ∂+ui, where yi+1/2 := yi + αi+1/2.

Similarly we approximate ∂yu|y=yi−1/2
and denote it by ∂−ui. We also denote ui+1/2 :=

(ui+1+ui)/2 and ki+1/2 := k(ui+1/2) (similarly for i−1/2). Then, the ODE approximation
of (8) at point y = yi reads as

u̇i =
2Ks

θs − θr

1

ss2
[Di+1/2∂

+ui −Di−1/2∂
−ui + (ṡ1(1− yi) + ṡ2yi)

dL(z; yi)

dz

∣

∣

∣

∣

z=zi

−

ω2ss

2g
(ki+1/2(r0 + s1 + yi+1/2ss)− ki−1/2(r0 + s1 + yi−1/2ss))], i = 1, ..., N − 1, (11)

ℓ̇(t) = f1(ℓ, s1) (12)

ṡ1(t) = f1(ℓ, s1)− f2(s1, s2, u1, u2) (13)

ṡ2(t) = f3(s1, s2, uN−2, uN−1) (14)
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where L(z; yi) is the Lagrange polynomial of the second order crossing the points (yi−1,
ui−1(t)), (yi, ui(t)), (yi+1, ui+1(t)), and f3 is given by

f3(s1, s2, uN−2, uN−1) = −
Ksm

2

p(θs − θr)γ(n− 1)

1

ss(t)

[

dL−(z; yN)

dz
|z=1

]p

,

where p = 1/2+1/m and L−(z; yN ) is the Lagrange polynomial crossing the points (yN−2,
uN−2(t)), (yN−1, uN−1(t)), (1, 0). The function f2 represents the numerical approximation
of the flux qint and reads as

f2(s1, s2, u1, u2) =
Ks

ss(θs − θr)

(

dL+(z; y0)

dz

∣

∣

∣

∣

z=0

−
ω2

2g
s1

)

where L+(z; y0) is the Lagrange polynomial crossing the points (0, 0), (y1, h1), (y2, h2),

with hi = − 1
γ
[−1 + u

−1/m
i ]1/n, i = 1, 2. We note that the flux at y = 0 must be expressed

in terms of head (instead of saturation) since at y = 0 we have u0 = 1, h0 = 0 and
D(1) = +∞. We replace ṡ1, ṡ2 in (11) by f1−f2 and f3, respectively, and obtain an ODE
system

ẇ = F (t, w), w = [u1, ..., uN−1, ℓ, s1, s2],

which canbe solved by an ODE solver for stiff systems. This system must be completed
by the initial state w(0) = [u1(0), ..., uN−1(0), ℓ(0), s1(0), s2(0)].

Above model is valid up to a time T1, which is characterized by ℓ(T1) = 0. For t > T1,
the model must be changed, because of a change in boundary condition at y = 0 which
for T > T1 will be free of flux. In this case, the solution vector w changes in such a way
that component s1(t) is replaced by a new unknown, namely u0(t). This mathematical
model can be used up to the time t = T2, which is defined by the interface arriving at the
right edge, s2(T2) = L.

A more accurate approximation of (13) is linked with the global mass balance argument
of infiltrated water. The numerical approximation of Richards equation will increase if
we express Richards equation in terms of both pressure head and saturation which are
related in (2). In the grid points where saturation is close to 1, we use the head variable
and where the saturation is close to zero, we use the saturation variable. In this way we
increase the approximation of the flux in and near the free boundaries. To increase the
approximation of interface s1, instead of (13), we consider the mass balance equation

(θs − θr)ℓ(t) + s1(t)− r0 +

N−1
∑

i=0

ciui = ℓ(0); (15)

where ci = (α(i+ 1)− α(i))/2, i = 1, ..., N − 1; c0 = α(0)/2; u0 = 1 (integration by the
trapezoidal rule). Now, the approximation consists of N+1 ODE (SR and (12), (14)) and
the algebraic equation (15). In this way we replace ODE (13) (with low approximation
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Figure 1: Evolution of saturation and head, t ∈ (0, 1672), Exp. 1.

time.10s M.10−6 G Mw Gs Mws

0 0.7880 0.2112 0.1595 1.0388 2.0613
17 0.8180 0.7675 0.5815 1.1578 2.0612
102 0.9188 2.0255 1.5343 1.9419 2.0613
167 0.9959 2.7248 2.0609 2.7231 2.0615

Table 1: Rotational momentum, Gravitational center, Water amount

accuracy of f2) by (15) representing the global mass balance condition. This system can
be written in the form

M(t, z)ż(t) = f(t, z) (16)

where z = [h1, ..., hi0, ui0+1, ..., uN−1, s1, s2, ℓ]. During the time period t ∈ (T1, T2) the
system is regular and at time t = T2 it needs to be modified, since the right boundary
could be sealed and s2 will be replaced by uN . Another possibility is to let this boundary
free and collect the expelled water.

4 NUMERICAL EXPERIMENTS

In the numerical experiments we will use r0 = 30 L = 10, ω = 20, Ks = 2.4 10−5,
θr = 0.02, θs = 0.4 γ = −0.0189 and n = 2.81. The space discretization for T ∈ (0, T1)
is not equidistant. We shall consider N = 40 grid points with the following geometrical
distribution: the first space interval is d1 = 1/20 and then di+1 = qdi with q < 1. In the
numerical approximation of the infiltration during the time interval t ∈ (T1, T2) a uniform
space discretization with N = 40 will be used.

Experiment 1 In this experiment we show the time evolution of the saturation and the
head in 10 equidistant time sections for t ∈ (0, T1), see Fig. 1(a) and 1(b). For the same
time sections we draw s1, s2, ℓ in Fig. 2.

The rotational momentum M (rotational kinetic energy of the infiltrated water mass in
the sample), gravitational center G and water massMw of the sample (r0+s1(t), r0+s2(t))
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Figure 2: Evolution of saturation front, wetness front and water level, Exp. 1.

iteration −100.γ n Ks 10
5 RMS

0 1.2 2. 1.6 1.5014 105

4 1.0071 2.1956 1.7213 9.7204 103

8 1.8651 2.8258 2.3910 20.572
12 1.8862 2.8094 2.4000 9.4134 10−2

16 1.8863 2.8090 2.3997 1.5563 10−2

18 1.8864 2.8097 2.3996 2.8347 10−3

Table 2: LM -iterations for determination of γ, n,Ks

are computed from (at time t)

M =
ω2L

2g

∫ 1

0

(r0 + Lz)2u(t, z) dz,

Mw = L

∫ 1

0

u(t, z)dz; G = L

∫ 1

0

yu(t, z)dz/Mw,

which we evaluate numerically using the trapezoidal rule. HereMs, Gs,Mws will represent
M,G,Mw for the entire system where water is present, i.e., in r ∈ (r0 − ℓ(t), r0 + s2(t)),
which means that Mws should be a constant.
The values for the global characteristics M,G,Mw for this experiments at the correspond-
ing time sections are included in Table 1. From this table we can see that the water mass
is conserved up to 3-4 digits. The entire computation takes 6 seconds on a normal desktop
PC.
In Fig. 1(b) we have drawn only the non-positive part of the head in the sample, i.e.,
only in the region (s1(t), s2(t)). In the region (0, s1(t)) the head is positive and a convex
parabola as given in formula (5).

Experiment 2 In this experiment we shall simulate the determination of soil parameters
γ, n,Ks using the global characteristics obtained by the following centrifugation scenario:
infiltration into the dry sample along the time t ∈ (0, T2). The measurement data is
generated by the solution of the direct problem (with given standard γ, n,Ks) and next
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it −100.γ n Ks 10
5 RMS

0 1.3 2. 1.8 1.2638 105

2 1.5676 2.7798 2.2608 94.329
4 1.7988 2.7715 2.3889 0.666
6 1.7638 2.7560 2.3804 0.216
8 1.7638 2.7560 2.2007 0.216

Table 3: LM -iterations for determination of γ, n,Ks, 5% noise.

it −100.γ n Ks 10
5 RMS

0 1.3 2. 1.8 1.2638 105

2 1.3233 2.3180 2.3000 1.2129 103

4 1.4005 2.4951 2.3364 1.1389
6 1.4003 2.4954 2.3367 1.1090
8 1.4174 2.5126 2.3379 1.1081
10 1.4711 2.5636 2.3411 1.0150

Table 4: LM -iterations for determination of γ, n,Ks, 10% noise.

we retain only the computed characteristics and forget the soil parameters. Finally, in an
iteration process using the LM method the soil parameters are determened.
The global characteristics data are collected at time sections t = 0; 360; 720; 1080; T1,
where for t = T1 the water chamber is empty. We denote data1 = [ℓ,M,G, Ms, Gs, T1].
Then, centrifugation prolongs up to the time when the water front reaches the right
boundary of the sample (for t = T2). At the same time sections (starting from t = T1) we
collect the data2 = [M,G, T2]. Then the measurements are data = [data1, data2]. In Table
2 we present the iterations of the LM method to determine γ, n,Ks. RMSi represents
||resi||

2 where resi = datai − data. Here datai are obtained by the numerical solution in
the i-th iteration step. In Table 2 row i = 0 contains the starting values for γ, n,Ks.

Experiment 3 In this experiment we use as measurements of global characteristics data1 =
[ℓ,Ms, T1] collected in time sections t = 100; 200; ...; 1100; 1200 of (0, T1) and data2 =
[Ms, T2] collected in the same time sections during the time interval (T1, T2). Next,

it −100.γ n Ks 10
5 RMS

0 1.3 2. 1.8 1.2629 105

2 1.5712 2.1365 1.6149 2.4881 101

4 1.7086 2.7309 2.3748 4.2321
6 1.7100 2.7289 2.3726 2.8643
10 1.8469 2.7290 2.3728 2.8571

Table 5: LM -iterations for determination of γ, n,Ks, 10% noise, s2 measured.
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data = [data1; data2] is perturbed with 5% and 10% of noise. For this, every compo-
nent data(i) is replaced by data(i)(1 + q (rand − 0.5)) for q = 0.1, 0.2 (for 5%, 10%),
respectively, here rand is a random number in (0, 1). The determination of the soil pa-
rameters by LM iterations is presented in Table 3 and 4. If we include in the measured
data also the time evolution of the wettness front s2, then we obtain the LM iterations
(for 10% of noise) in Table 5. The results show the significant influence of knowing s2 in
determination procedure. As we can see from Fig. 1, the position of s2 could be success-
fuly measured, e.g., by gama rays, since the saturation front is very sharp, especially at
higher ω.

Remark As we can see from these experiments the chosen global characteristics in Ex-
periment 2 are sufficient for determining soil parameters. We can increase the reliability of
the determination of γ, n,Ks by extending the vector of measured characteristics. For ex-
ample, we can collect output water (when the wetness front reaches the right boundary) in
a chambre and extend the global characteristics with the measurements of expelled water.
Also, we can continue with the injection of additional water into the injection chamber
and repeat the collection of global characteristics. In this way it is possible to create a
sufficiently long vector of measured global characteristics. Another possibility is to drop
the gravitational center measurements (or the rotational momentum) from the collection
of global characteristics (instead of using both of them). Measuring the indicated global
characteristics is technically cheap.
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[1] D. Constales and J. Kačur. Determination of soil parameters via the solution of inverse
problems in infiltration. Computational Geosciences, 5:25–46, 2004.

[2] G.L. Hassler and E. Brunner. Measurements of capillary pressure in small core sam-
ples. Trans.AIME, 160:114–123, 1945.
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