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Summary. A physically-based distributed hydrological model simulating complex surface–
subsurface flow and transport interactions is presented. The subsurface component is
modeled by the three-dimensional Richards equation for flow and the classical advection-
dispersion-reaction equation for transport, solved using finite element/finite volume tech-
niques. The surface model is based on a path-based (rill flow) diffusion wave equation
for both flow and transport, solved using a Muskingum-Cunge scheme. The path-based
paradigm, together with Leopold and Maddock scaling relations for hydraulic parameter-
ization, allow the same surface model to be used for both overland and channel dynamics.
A novel approach for resolution of the interactions of water across the land surface, based
on a boundary condition switching algorithm, is extended to the solute flux exchanges.
The use of a high resolution finite volume scheme for the advective component of subsur-
face transport introduces minimal numerical diffusion even in the absence of physical dis-
persion. An application to the Abdul and Gillham sandbox experiment [1] is presented to
illustrate the abilities of the model and to demonstrate the influence of surface–subsurface
diffusive exchanges on the tracer dynamics of this particular system.

1 INTRODUCTION

Critical exchanges of water and solutes between the atmosphere, the land surface,
and the subsurface occur at all scales. At the smaller scale representing hillslopes and
small catchments, it is possible to resolve these exchanges using detailed physically-based
models. In the last decade, process-based distributed models that couple in a physical
way surface and subsurface processes have emerged (e.g., [4],[7],[10] and papers cited
therein), and constitute useful tools to investigate various hydrological problems coupling
flow and transport. In addition to their importance in general water quality applications,
such models allow determination of flow paths and travel time distributions, important
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in addressing open issues related to coupled water and solute transport dynamics such
as the role of subsurface water in runoff generation and the relative contributions of
”‘old water”’ and ”‘new water”’ in streamflow hydrographs. Appropriate mathematical
equations governing surface and subsurface flow and transport as separate components
exist, but their coupling is still a challenge. Moreover, these equations can be very difficult
to solve, owing to nonlinearities, sharp propagation fronts, and heterogeneities. In this
work we consider the implications of these complexities on solving flow and transport
in a coupled surface–subsurface model. The model used is based on the coupling of the
three-dimensional Richards equation for flow in variably saturated porous media, a path-
based (rill flow) diffusion wave approximation to the Saint-Venant equations for surface
dynamics on hillslopes and in stream channels, and the classical advection-dispersion-
reaction equation with first-order mass transfer. Numerical solution schemes include finite
elements for discretization of the flow equations and coupled finite elements-finite volumes
for the transport equation. An application on the Abdul and Gillham sandbox experiment
[1] is used to illustrate the ability of the model to describe complex surface–subsurface
flow and transport interactions.

2 FLOW MODEL

The diffusive wave equation and the Richards equation respectively describe surface
flow propagation and variably saturated flow in the subsurface porous media:

∂Q

∂t
+ ck

∂Q

∂s
= Dh

∂2Q

∂s2
+ ckqs (1)

SwSs

∂ψ

∂t
+ φ

∂Sw

∂t
= ~∇ · [KsKr(~∇ψ + ~ηz] + qss (2)

where s is the longitudinal coordinate used to describe the channel network [L], Q is the
surface discharge [L3/T ], ck is the kinematic celerity [L/T ], Dh is the hydraulic diffusivity
[L2/T ], and qs is the inflow (positive) or outflow (negative) rate from the subsurface to
the surface [L3/LT ]. In the subsurface flow equation (2), Sw = θ/θs is water saturation
[-], θ is the volumetric moisture content [-], θs is the saturated moisture content (generally
equal to the porosity Φ), Ss is the aquifer specific storage [L−1], ψ is pressure head [L], t

is time [T], ~∇ is the gradient operator [L−1], Ks is the saturated hydraulic conductivity
[L/T ], Kr(ψ) is the relative hydraulic conductivity [-], ~ηz = (0, 0, 1)′, z is the vertical
coordinate upward [L], and qss is the source (positive) or sink (negative) terms [L3/L3T ].
The surface–subsurface flow coupling is handled through appropriate definiton of the
exchange fluxes qss and qs.

Both the 3D subsurface flow and 1D surface flow equations are solved using classical
numerical formulations, i.e., Galerkin finite elements for the subsurface and a finite differ-
ence explicit in time Muskingum-Cunge algorithm for the surface. More details on both
subsurface and surface flow solvers, and their relative features can be found in [2, 8].
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3 TRANSPORT MODEL

A diffusive wave equation and the classical advection-dispersion equation respectively
describe transport processes at the land surface and in subsurface porous medium:

∂Qm

∂t
+ ct

∂Qm

∂s
= Dc

∂2Qm

∂s2
+ ctqts (3)

∂θc

∂t
= ~∇ · [−~Uc+D~∇c] + qtss (4)

where Qm is the mass discharge [M/T ], ct is the kinematic solute celerity [L/T ], Dc is the
solute surface diffusivity [L2/T ], and qts is the mass inflow (positive) or outflow (negative)
rate from the subsurface to the surface [ML3/LT ]. In the subsurface transport equation

(4), c is the solute subsurface concentration [M/L3], ~U is the Darcy velocity [L/T ], D is
the tensor accounting for both mechanical dispersion and molecular diffusion [L2/T ], and
qtss is the mass source (positive) or sink (negative) terms [M/L3T ]. Both the volumetric

water content θ and the subsurface velocity field ~U are computed by the subsurface flow
model. The surface–subsurface transport coupling is handled through the definiton of the
exchange fluxes qtss and qts.

For consistency with the flow solver, the surface transport equation is solved with
the same formulation as the one used to solve for flow. A finite difference explicit in
time Muskingum-Cunge algorithm is thus used to compute ingoing and outgoing mass
discharge for every cell of the surface domain.

The subsurface transport solver uses a time-splitting technique combining both finite
volumes and classical finite elements. The method used is similar to the one presented in
[5, 6] except that classical finite elements are used instead of mixed hybrid finite elements.
Following this approach, the advection-dispersion equation is solved via a time-splitting
approach that solves separately the dispersion and advection parts. The advection equa-
tion is first solved using an explicit in time finite volume formulation. The resulting
concentration is used as an initial condition for the finite elements resolution of the dif-
fusive part of the equation. This method allows the use of multiple advective time steps
per dispersive time step and has been shown to yield accurate results also when dealing
with advection-dominated transport processes. We refer the reader to reference and to
[9] for more details.

4 surface–subsurface COUPLINGS

The coupling for both the flow and transport surface-subsurface exchanges is based
on a surface boundary condition switching algorithm. Boundary condition switching
is necessary because of the way soil surface conditions evolve over time in response to
atmospheric forcing. Mass balance equations are used to compute relevant exchange
fluxes between the surface and subsurface - i.e. qss and qs of equations (1) and (2) for
flow and qtss and qts of equations (3) and (4) for transport.
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4.1 Flow coupling

As atmospheric forcing constitutes a boundary condition for the subsurface flow equa-
tion, the partitionning between surface and subsurface flow processes is controlled by the
subsurface flow model. Depending on whether the surface is ponded or unsaturated, ei-
ther a Dirichlet-type (prescribed head) or a Neumann-type (prescribed flux) boundary
condition is imposed for the subsurface flow resolution. For surface nodes where ponding
occurs, the actual flux that can infiltrate or exfiltrate is evaluated after the subsurface
flow solution using the pressure field computed using the Dirichlet boundary condition.
The switching algorithm then performs a mass-balance calculation between the potential
flux (i.e., the atmospheric forcing), the actual flux, and the ponding water (when exist-
ing) to determine (i) if the surface is ponded or not and (ii) the amount of water that is
partitioned to surface runoff if ponding occurs. A switching check between Neumann and
Dirichlet conditions is performed at every non-linear iteration of the Richards equation
solver. More details on the flow coupling algorithm can be found in [2].

4.2 Transport coupling

Transport exchanges across the land surface are strongly coupled to water exchanges.
The transport interactions between surface and subsurface are directly controlled by the
corresponding flow dynamics computed with the flow model, i.e., by the ponding situation,
the actual flux (infiltration or exfiltration) and the potential flux (rainfall or evaporation).
Depending on the flow situations, either a total Cauchy or a zero-Neumann boundary con-
dition is imposed on the subsurface transport module. For surface nodes where infiltration
occurs, a total Cauchy boundary condition is imposed. In the case of rainfall, at a given
time a surface node evaluated by the flow module as unsaturated signals that all the
potential rainfall and the ponding head at the surface (if existing) have infiltrated and
the total flux imposed at the surface is the sum of the rainfall and the contributions as
calculated by the flow equation:

(D~∇c− ~Uc) · ~n = qCauchy = Rcr + (qact −R)csurf (5)

where the LHS indicates the total Cauchy boundary condition to be imposed in the
subsurface transport module, R is rainfall rate and cr its input concentration, qact is the
infiltration flux already calculated by the flow code, and csurf is the concentration at the
surface node (imposed or calculated at the previous time step).

If the node is ponded, the infiltration capacity is smaller than the total amount of water
available for infiltration (i.e., potential rainfall plus ponding water) and thus some water
remains at the surface. In this case, the surface concentration is updated using a mass-
balance calculation to account for the effect of rainfall (for instance dilution) on the surface
concentration. The total flux imposed is then calculated using this updated concentration
and the actual flux computed by the flow model. For surface nodes where exfiltration
occurs, a zero-Neumann boundary condition is imposed. The flow model indeed computes
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an outgoing water flux across the land surface and the concentration of this water is part
of the unknowns of the subsurface transport equation. The zero-Neumann boundary
condition allows to model a solute exchange flux controlled by advection only. Note that
in the transport coupling algorithm no diffusive solute exchanges between surface and
subsurface are modeled. The effect of this assumption will be illustrated in the section
describing the application example. More details on the transport coupling algorithm can
be found in [9].

5 SOLUTION PROCEDURE

The explicit nature of the surface flow formulation allows the use of a noniterative
sequential procedure for the resolution of the coupled flow and transport problem. The
different steps between time tk and tk+1 can be described as follow: (i) solution of the
surface flow equation using qks as source term to compute discharge Qk+1 and the ponding
head hk+1; (ii) solution of the surface transport using qkts as source term to compute Qk+1

m

and its equivalent in surface concentration ck+1
surf ; (iii) definition of the surface boundary

condition for the subsurface flow equation using hk+1 and atmospheric inputs; (iv) so-
lution of the subsurface flow equation to compute the pressure field ψk+1, the velocity
field ~Uk+1, and the moisture content θk+1; (v) calculation of the subsurface-to-surface
water source/sink term qkss using ψk+1 and the balance between atmospheric inputs and
actual fluxes; (vi) definition of the surface boundary condition for the subsurface trans-
port equation using ck+1

surf , h
k+1, and potential and actual water fluxes; (vii) solution of the

subsurface transport equation to compute the subsurface concentration ck+1; and (viii)
calculation of the subsurface-to-surface transport source/sink term qktss using all the flow
and transport variables needed to perform a consistent solute mass-balance.

The time step strategy is controlled by the subsurface flow model. During the simu-
lation, the time step size grows and decreases as a function of the number of nonlinear
iterations needed to reach convergence for the subsurface flow equation. Nevertheless,
multiple time steps for both the flow and transport surface equations can be executed per
single subsurface flow time step. For the transport solution, the dispersive time step is
chosen to be equal to the one used for the subsurface flow resolution. Multiple advective
time steps per dispersive time step can be used if needed to ensure an appropriate CFL
number and to properly capture the advective processes. This elaborate time step strat-
egy adapts automatically to the complex surface–subsurface flow and transport dynamics
in an accurate and efficient way.

6 APPLICATION EXAMPLE

The Adbul and Gillham sandbox experiment [1] has been used in several previous stud-
ies on integrated flow and transport modelling to assess the quality of surface–subsurface
coupled models. Nevertheless, it is widely recognized that theflow and transport dynam-
ics of this experiment cannot be accurately reproduced because of the strong influence of
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the air phase on the infiltration process in the system. The model presented in this paper
was thus validated using synthetic hillslope tracer experiments. The results presented in
[9] demonstrate that the model properly describes the main runoff generation processes.
Simulations on the Abdul and Gillham system are here performed not to validate the
model but rather to illustrate the role of surface–subsurface tracer diffusive exchanges on
transport dynamics at a small scale.

6.1 Experimental setup

The geometry of the domain and the surface and rainfall parameters are described in
Figure 1a. The soil parameters (including van Genuchten parameters - see [2] for their
definition) are described in Table 1. The domain is triangulated starting from a 5 x 100
x 100 grid. The rainfall is tagged with a virtual tracer whose concentration is set to one.
The initial concentration in the subsurface domain is equal to zero. Both the lateral and
longitudinal dispersivities are set to zero and only the molecular diffusion is considered,
at a value equal to 1.2× 10−9 m2/s.

n psat Ks Ss Porosity
5.5 -0,44 m 3.5× 10−5 m/s 5.× 10−4 m−1 0.34

Table 1: Soil parameters used to simulate the Abdul and Gillham system.

Two different simulations were performed. The first uses the transport coupling algo-
rithm presented previously. This algorithm only accounts for advective solute exchanges;
diffusives exchanges are not modeled. In the second simulation we modify the coupling
algorithm to account for diffusive solute exchanges in a simple way, by adding an ex-
change term proportional to the concentration difference between surface and subsurface.
The proportionality coefficient characterizing these exchanges is then calibrated ad hoc to
obtain a reasonably good fit between measured and simulated transport responses. Note
that the aim of this modelling exercise is not to obtain a perfect fit, not to adress the
complex issues of the influence of hydrodynamic mixing on tracer experiments (see [3]),
but rather to illustrate the possible influence of these diffusive exchanges on the simulated
transport dynamics, and to show the capabilities of the proposed modeling approach to
simulate flow and transport at a laboratory or small catchment scale.

6.2 Results and discussion

The comparison between the relative contributions of event and pre-event water sim-
ulated with (blue) and without (red) surface–subsurface diffusive solute exchanges and
measured by Abdul and Gillham is presented in Figure 1b. Normalized total outflow,
normalized event contributions, and normalized pre-event contributions are plotted. The
normalization is achieved by dividing the fluxes by the rainfall rate so that the plotted
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Figure 1: (a) Geometry and boundary conditions for the Abdul and Gillham system; (b) Comparison
between simulated and measured fluxes. For the simulated ones: red = without surface–subsurface
diffusive exchange for solute and blue = with surface–subsurface diffusive exchanges for solute.

values are bounded between 0 and 1. As mentioned previously, the flow dynamics cannot
be reproduced properly as a steady state is reached in the simulations at an earlier time
compared to the measurments. The transport results suggest that representation of the
diffusive solute exchanges is needed to simulate an early peak of pre-event water. Indeed
the results obtained with only advective coupling do not show the pre-event water peak,
confirming the results presented in [3] that suggest that hydrodynamic mixing may have
a stong impact on hydrograph separation, at least at the laboratory scale.
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