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Summary. The accurate simulation of coupling between flow and stress in saturated
porous media is a major issue in a broad variety of fields, ranging from reservoir engi-
neering to biomechanics. Despite the intensive research carried out in recent years, the
numerical solution to the partial differential equations governing the behaviour of real
fluid saturated heterogeneous porous media still represents a demanding task. In the
present communication an original fully coupled 3-D Mixed Finite Element (MFE) model
is developed with the aim at reducing the numerical oscillations of the pore pressure pre-
dicted with the aid of traditional FEs. Using a mixed approach for the flow equation
enforces an element-wise conservative velocity field with a similar order of approxima-
tion for both pore pressure and stress. This helps stabilize the numerical solution and
obtain a more accurate calculation of the fluxes. The MFE model is validated against
Terzaghi’s analytical solution and successfully tested in two large size realistic and com-
putationally challenging applications, i.e. the consolidation of a river embankment and
the Noordbergum effect due to groundwater withdrawal from a shallow confined aquifer.

1 INTRODUCTION

Poro-elasticity denotes the coupled process between mechanics and flow in porous me-
dia. Its theoretical basis goes back to the mid 1920s when Terzaghi described analytically
the one-dimensional (1-D) consolidation of a soil column under a constant load [1]. In 1941
Biot generalized Terzaghi’s theory to three-dimensional (3-D) porous media [2] by estab-
lishing the mathematical framework which is usually termed as poro-elasticity. Despite
the intensive research in the area, the numerical solution of the governing PDEs, however,
can be a difficult task mainly because of two factors. First, the solution of the fully cou-
pled problem tipically involves large algebraic systems that can be severely ill-conditioned
[3]. Second, the pore pressure can be numerically unstable, the main reason being the
assumption of a nearly incompressible fluid which may yield a locking phenomenon with
traditional FEs [4]. Different remedies can be implemented to cope with such numerical
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difficulties. Recently some approaches have been advanced based on mixed formulations,
allowing for both solving nearly incompressible problems with no locking and a greater
flexibility in predicting independently pressures, displacements and fluxes, e.g. [5, 6].

In the present communication a fully coupled 3-D MFE formulation is developed to
solve numerically the Biot equations of consolidation with the aim at alleviating the insta-
bilities in the pore pressure calculation. The fluid pore pressure and flux are approximated
in the lowest order Raviart-Thomas mixed space, while linear tetrahedral FEs are used for
the displacements. The main reasons for the above choices are threefold. First, keeping
the flux as a primary variable allows for a greater accuracy in the velocity field compared
to Galerkin FEs, which can be of interest whenever a consolidation model is coupled with
an advection-diffusion equation, e.g. to account for thermal effects or contaminant trans-
port. Second, a mixed formulation for the flow problem is element-wise mass conservative
because the normal flux is continuous across the element boundaries. Third, the practical
advantages from using low-order interpolation elements, such as ease of implementation,
refinement, and discretization of geometrically complex and heterogeneous domains, are
thouroughly preserved. The MFE model is verified against the well-known Terzaghi’s
analytical solution, and tested in two large size realistic and numerically challenging ap-
plications.

2 MFE MODEL OF BIOT CONSOLIDATION

The interaction between a granular material and the fluid filling its pores is governed by
a stress equilibrium equation coupled to a mass balance equation, with the relationship
linking the grain forces to the fluid pore pressure based on Terzaghi’s effective stress
principle. The equilibrium equation for an isotropic poro-elastic medium incorporating
the effective stress concept reads:

µ∇2û + (λ+ µ)∇divû = α∇p+ b (1)

where λ and µ are the Lamé constants, α is the Biot coefficient, b the body forces, û the
medium displacements and p the fluid pore pressure. The fluid mass balance is prescribed
by the continuity equation:

divv +
∂

∂t
(φβp+ α divû) = f (2)

where φ is the medium porosity, β the fluid compressibility, t time, f a flow source or sink
and v the Darcy velocity. Equation (2) must be coupled with Darcy’s law defining v:

κ
−1v + ∇p = 0 (3)

with κ = k/(ρg), k the hydraulic conductivity tensor and (ρg) the fluid specific weight.
Equations (1) through (3) form a coupled partial differential system defined on a 3-D

domain Ω with boundary Γ and û, v and p as unknowns. This system can be solved with
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appropriate boundary (BCs) and initial (ICs) conditions:

BCs:















û (x, t) = ûD (x, t) over ΓD

σtot (x, t)n (x) = tN (x, t) over ΓN

p (x, t) = pD (x, t) over Γp

v (x, t) · n (x) = qN (x, t) over Γq

ICs:

{

û (x, 0) = û0 (x)
p (x, 0) = p0 (x)

(4)

with ΓD ∪ ΓN = Γp ∪ Γq = Γ, σtot the total stress tensor, n the outer normal to Γ and x

the position vector in R
3, while the right-hand sides are known functions.

Approximate the medium displacement in space with continuous piecewise linear poly-
nomials ℓi, i = 1, . . . , nn, with nn the number of FE nodes in Ω:

û (x, t) ≃

[

nn
∑

i=1

ℓi (x)ux,i (t) ,
nn
∑

i=1

ℓi (x)uy,i (t) ,
nn
∑

i=1

ℓi (x)uz,i (t)

]T

= Nu (x)u (t) (5)

The fluid pore pressure and Darcy’s flux are discretized in space with piecewise constant
polynomials and in the lowest order Raviart-Thomas space [7], respectively. Denoting by
ne and nf the number of elements and faces, respectively, p and v are approximated as:

p (x, t) ≃
ne

∑

j=1

hj (x) pj (t) = hT (x)p (t) , hj (x) =

{

1 , x ∈ T (j)

0 , x ∈ Ω \ T (j) (6)

v (x, t) ≃

nf
∑

k=1

wk (x) qk (t) = W (x)q (t) , wk (x) =

{

± (x−xk)

3|V (T (j))|
, x ∈ T (j)

0 , x ∈ Ω \ T (j)
(7)

In equations (6) and (7) T (j) denotes the j-th tetrahedron, V its volume and xk the
position vector of the node opposite to the k-th face in T (j). The ± sign in (7) identifies
a conventional face orientation such that wk goes outward the element T (j) with the
smallest index j. This gives rise to a unitary flux through the k-th face and a zero flux
through all other edges. The vectors u(t), p(t) and q(t) whose components are the nodal
displacements ux,i, uy,i, uz,i, the elemental pressures pj and the edge normal fluxes qk,
respectively, are the discrete unknowns of the variational problem.

The governing equations are solved by the Galerkin method of weighted residuals,
leading to the following semi-discrete MFE expressions of (1), (2) and (3):

Ku −Qp = f1 (8)

BTq + P ṗ +QT u̇ = f2 (9)

Aq −Bp = f3 (10)

where:

A =
∫

Ω
W T

κ
−1W dΩ B =

∫

Ω
ωhT dΩ

K =
∫

Ω
BT

uDeBu dΩ P =
∫

Ω
φβhhT dΩ

Q =
∫

Ω
αBT

u ihT dΩ f1 =
∫

Ω
NT

u b dΩ +
∫

ΓN
NT

u tN dΓ

f2 =
∫

Ω
hf dΩ f3 = −

∫

Γp
pDW

Tn dΓ

(11)
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with Bu and De the strain-displacement and the elastic moduli matrix, respectively, i the
Kronecker delta in vectorial form, and ω a vector whose components are equal to div(wk),
k = 1, . . . , nf .

The system of differential-algebraic equations (8), (9) and (10) is numerically inte-
grated in time by a finite difference scheme. Consider any time-dependent function to
vary linearly in time between t and t + ∆t, and approximate any time-derivative at the
intermediate instant τ = θ (t+ ∆t)+(1 − θ) t with a simple incremental ratio (θ is a scalar
value comprised between 0 and 1). Setting γ = θ∆t and ψ = (1 − θ)/θ, the numerical
solution at time t+ ∆t can be computed by solving the linear algebraic system:

Azt+∆t = f t (12)

where:

A =





P QT γBT

Q −K 0
γB 0 −γA



 zt+∆t =





pt+∆t

ut+∆t

qt+∆t



 f t =





f (p)

f (u)

f (q)



 (13)

f (p) = (∆t− γ)
[

f t
2 −BTqt

]

+QTut + Ppt + γf t+∆t
2 (14)

f (u) = ψ
[

Kut −Qpt − f t
1

]

− f t+∆t
1 (15)

f (q) = (∆t− γ)
[

Aqt −Bpt − f t
3

]

− γf t+∆t
3 (16)

The matrix A in (12) has size ne +3nn +nf and is sparse, symmetric and indefinite. Suit-
able solvers for (12) belong to the class of the iterative projection-type Krylov subspace
methods properly preconditioned. The explicit construction of A, however, is generally
not convenient from a computational point of view. In fact, while A, B, K, P and Q can
be computed just once at the beginning of the simulation as they do not depend on t,
A changes at each step because ∆t, hence γ, is generally increased as the consolidation
proceeds. Therefore a specific block version of a preconditioned Krylov subspace method
proves appropriate. As to the preconditioner, we develop a variant of the block constraint
approach successfully applied to standard FE consolidation models, e.g. [8], in order to
accelerate the Symmetric Quasi-Minimal Residual solver [9] which has proved a robust
and efficient algorithm for sparse symmetric indefinite problems, e.g. [10]. The resulting
algorithm for the solution of equations (12) is provided in detail in [11].

3 NUMERICAL RESULTS

3.1 Model verification

The model is verified against Terzaghi’s classical consolidation problem, consisting
of a fluid-saturated column of height L with a constant loading PL on top (Figure 1).
Drainage is allowed for through the upper boundary only. The basement is fixed. The
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k [m/s] 10−5

φ [-] 0.375
β [MPa−1] 4.4 × 10−4

λ [MPa] 40.0
µ [MPa] 40.0
α [-] 1.0

Figure 1: Sketch of the setup and hydro-mechanical parameters used in Terzaghi’s consolidation test.
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Figure 2: Terzaghi’s problem: analytical and numerical solutions for the vertical displacement (left) and
the pore pressure (left), with h = 0.5 m, ∆t = 0.1 s and θ = 1.

load is applied istantaneously at time t = 0. A homogeneous sandy column with unit
section and L = 15 m is simulated, with the relevant hydraulic and mechanical properties
summarized in Figure 1. The prescribed distributed load PL is 104 Pa. The column is
discretized into regular tetrahedrals with a characteristic element size h = 0.5 m (Figure
1). The time integration is performed with a first-order implicit scheme (θ = 1) and a
constant time step ∆t = 0.1 s. The simulation proceeds until steady state conditions are
attained. A good matching between the analytical, e.g. [12], and the numerical solution
is obtained for both vertical displacement and pore pressure, as is shown in Figure 2. The
convergence properties of the proposed approach are discussed in [11].

3.2 Realistic applications

The 3-D MFE model has been experimented with in two realistic applications address-
ing the consolidation of a shallow formation in the geological basin underlying the Venice
lagoon, Italy. A cylindrical stratified porous volume made of a sequence of alternating
sandy, silty and clayey layers down to 50 m depth is simulated. The hydro-geological
properties are summarized in Figure 3 and are representative of a shallow sedimentary
sequence of the upper Adriatic. The axial symmetry of the model geometry allows for the
discretization of one fourth only of the overall porous volume (Figure 3) with zero flux
and horizontal displacement prescribed on the inner boundaries. The following additional
boundary conditions apply: the outer boundary is fixed and drained, the bottom is fixed
and impervious, the top is traction-free and drained. As shown in Figure 3, a vertically
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Clay Silt Sand
kxx = kyy [m/s] 10−7 10−6 10−4

kzz/kxx [-] 1 1 0.1
φ [-] 0.3 0.3 0.3
β [MPa−1] 4.32e-4 4.32e-4 4.32e-4
λ [MPa] 1.227 1.227 2.597
µ [MPa] 0.819 0.819 1.732
α [-] 1.0 1.0 1.0

Figure 3: Axonometric view of the FE grid (left) and hydro-geological properties of the shallow sediments
in the Upper Adriatic basin (right) used in the realistic model applications.

Figure 4: Test case 1: pore pressure variation vs. time due to the application of a surface load.

regularly refined grid totaling nn = 13, 356, ne = 70, 080 and nf = 143, 368 is used with
an overall model size equal to 253,516.

3.2.1 Test case 1: surface load

A uniform surface load distributed over a circular area centered on the domain top with
a 10-m radius is applied. The load is set equal to 8 kN/m2. The load is assumed to increase
linearly from 0 to 8 kN/m2 within 3 days and then to remain constant. As the first layer
consists of low permeable sediments, the pore pressure is expected to initially rise at the
load application as a consequence of the almost undrained deformation of the clay. The
overpressure gradually dissipates in time, with the dissipation rate depending on sediment
transmissivity. This is physically related to the zero volume change rate prescribed at the
initial time for the porous medium, which represents the main source of instability in
the numerical pore pressure calculation. Moreover, the induced overpressure is generally
pretty small, so reproducing it numerically may be a difficult task. The overpressure rise
and dissipation in time as simulated by the MFE coupled model are shown in Figure 4.
Despite the small overpressure, no oscillations in the numerical solution are observed. As
the pore water flows out of the top draining surface the soil consolidates and the ground
surface subsides.
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Figure 5: Test case 2: pore overpressure vs. time on a horizontal plane located in the middle of the upper
clay layer.

3.2.2 Test case 2: the Noordbergum effect

One of the most interesting physical processes accounted for by coupling between fluid
flow and soil stress is the pressure rise occurring in a low permeable layer confining a
pumped formation [12]. The phenomenon is called Noordbergum effect by the name of the
village in The Netherlands where it was first observed. Because of the small overpressure
involved, especially when pumping occurs at a shallow depth, the Noordbergum effect
is quite difficult to simulate numerically in a stable way. A constant withdrawal rate
of 8 l/s is prescribed from the shallowest sandy layer (Figure 3) through a vertical well
located at the centre of the simulated cylindrical porous volume. The pore pressure in
the pumped formation achieves a maximum drawdown of 0.15 MPa 20 days after the
beginning of pumping. To reveal the Noordbergum effect Figure 5 provides the numerical
pore pressure solution as obtained in a 3-m deep horizontal plane, i.e. in the middle of the
upper clay layer. The pore pressure increases at the initial stage of pumping with a very
small value (about 1 kPa, i.e. more than 100 times smaller than the largest drawdown),
then quickly dissipates as the consolidation proceeds. The numerical solution appears to
be stable with no oscillations and a good degree of symmetry.

4 CONCLUSIONS

A fully coupled 3D MFE model for the simulation of Biot consolidation has been
developed with the aim at alleviating the oscillations of the pore pressure at the initial
stage of the process as predicted by traditional FEs. A linear piecewise polynomial and
the lowest order Raviart-Thomas mixed space are selected to approximate the medium
displacement and the fluid flow rate, respectively, thus ensuring an element-wise mass
conservative formulation and preserving meanwhile the practical advantage of using low-
order interpolation elements. A finite difference scheme is used for integration in time.
The numerical solution at each time step is obtained with an ad hoc algorithm that takes
advantage of the block structure of the algebraic linearized system, addressing the problem
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in a fully coupled way. The model is verified against the well-known Terzaghi’s analytical
solution and successfully experimented with in realistic large-size complex problems, such
as the consolidation of low permeable layers due to a sudden load and the Noordbergum
effect, with the generation of no instabilities in the pore pressure prediction.
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