Tissue-scale, patient-specific modeling and simulation of prostate cancer

Guillermo Lorenzo†, Michael A. Scott‡, Kevin Tew‡, Thomas J.R. Hughes§ and Hector Gomez*

* Departamento de Métodos Matemáticos e de Representación
Universidade da Coruña
Campus de Elviña s/n, 15071 A Coruña, Spain
E-mail: guillermo.lorenzo@udc.es, hgomez@udc.es
Web page: http://caminos.udc.es/gmni/gente/hgomez/index.html

† Department of Civil and Environmental Engineering
Brigham Young University
Provo, Utah 84602, USA
E-mail: michael.scott@byu.edu, Web page: http://ceen.et.byu.edu/content/michael-scott

‡ Department of Information Technology
Brigham Young University
Provo, Utah 84602, USA
E-mail: kevin_tew@byu.edu, Web page: https://it.et.byu.edu/faculty/kevin-tew

§ Institute for Computational Engineering and Sciences
The University of Texas at Austin
201 East 24th Street, C0200, Austin, Texas 78712-1229, USA
E-mail: hughes@ices.utexas.edu, Web page: http://users.ices.utexas.edu/ hughes/

ABSTRACT

Predictive medicine is a new trend in Medicine that aims at forecasting clinical outcomes of diseases and designing optimal therapies on a patient-specific basis. Methods of predictive medicine are based on mathematical modeling and computer simulations. Prostate cancer (PCa) is a major cancer among men worldwide and an ideal candidate to benefit from this approach to medical practice [1]. We present a continuous model that reproduces the growth patterns of PCa. We use the phase-field method to account for the healthy-tumoral cell transformation and basic diffusion-reaction equations to model the dynamics of key substances. The growing tumor provokes a mass effect that induces the deformation of the prostate. We also explore the mechanical coupling of this deformation with tumor dynamics. Our simulations leverage Isogeometric Analysis (IGA) using a hierarchical basis of NURBS to accurately and efficiently compute tumor growth [1, 2]. We used our model to perform tissue-scale, patient-specific simulations of PCa cases, based on the patient’s prostatic anatomy extracted from medical images. These simulations show tumor progression similar to that seen in clinical practice.

REFERENCES
