FINITE ELEMENT FORMULATIONS AND ADVANCED APPLICATIONS

Rainald Löhner

MS 4C7, Fluids and Materials School of Computational Sciences and Informatics George Mason University, Fairfax, VA 22030, USA

ACKNOWLEDGEMENTS (1)

GMU/SCS:

Chi Yang, Juan Cebral, Jarek Tuszyński, Jacob Waltz, Fernando Camelli, Fumiya Togashi, Joaquin Arteaga-Gomez, Rommel Espinoza, Marcelo Castro, Fernando Mut, Sunil Appanaboyima

SAIC, McLean, VA:

Joseph Baum, Hong Luo, Eric Mestreau, Dmitri Sharov, Orlando Soto

General Atomics and ES3, San Diego, CA:

Daniele Pelessone, Charles Charman

<u>NRL</u>:

Ravi Ramamurti, Alex Shostko, Choong Oh

 $\mathbf{2}$

1

FSI: Acknowledgements 3

ACKNOWLEDGEMENTS (2)

ESI, Paris:

Jean Roger, Pierre de Kermel, Ming Zhu, Philippe Ravier, Eberhard Haug, Jan Clinkemaier

CIMNE, Barcelona:

Eugenio Oñate, Ramon Ribo, Chris Morton, Sergio Idelssohn, Carlos Sacco

Institut für Statik, TU Braunschweig:

Elmar Walhorn, Björn Hübner

FSI: Coupling Strategies 1

THE COMPLETE SYSTEM

THERMAL FIELD (1)

$$\mathbf{LHST} \cdot \Delta \mathbf{T} = \left(\frac{1}{\Delta t}\mathbf{C} + \Theta \mathbf{K}\right) \cdot \Delta \mathbf{T} = \mathbf{f}_t^i + \mathbf{f}_t^e$$

 Δt : Timestep

- ${\mathbf C}\,$: Heat Capacitance Matrix
- \mathbf{T} : Nodal Temperatures
- ${\bf K}\,$: Heat Conduction Matrix
- **f** : Internal and External Thermal Loads

THERMAL FIELD (2)

Split Into Degrees of Freedom:

- f : On Fluid Surface
- t : Remaining Ones

$$\begin{cases} \mathbf{LHST}_{ff} \ \mathbf{LHST}_{ft} \\ \mathbf{LHST}_{tf} \ \mathbf{LHST}_{tt} \end{cases} \cdot \begin{pmatrix} \Delta \mathbf{T}_{f} \\ \Delta \mathbf{T}_{t} \end{pmatrix} = \\ \begin{pmatrix} \mathbf{f}_{f} \\ \mathbf{f}_{t} \end{pmatrix}^{i} + \begin{pmatrix} \mathbf{f}_{f} \\ \mathbf{f}_{t} \end{pmatrix}^{e} + \begin{pmatrix} \mathbf{L} \cdot (\mathbf{q}_{f} + \Theta \Delta \mathbf{q}_{f}) \\ 0 \end{pmatrix} \end{cases}$$

2

FSI: Coupling Strategies 4

SOLID REGION (1)

$$\mathbf{LHSS} \cdot \Delta \dot{\mathbf{X}} = (\alpha \mathbf{M}_s + \beta \mathbf{D} + \gamma \mathbf{K}) \, \Delta \dot{\mathbf{X}} =$$

$$\mathbf{f}_{s}^{i} + \mathbf{f}_{s}^{e} + \Theta \Delta \mathbf{f}_{s}^{e} + \mathbf{Q}(\mathbf{T} + \Theta \Delta \mathbf{T})$$

- \mathbf{X} : Displacement Vector
- $\dot{\mathbf{X}}$: Velocity Vector
- $\mathbf{M}_s\,$: Mass Matrix
- \mathbf{D} : Damping Matrix
- **K** : Stiffness Matrix
- \mathbf{f}_s^i : Internal (Stiffness, Damping, Inertia) Forces
- \mathbf{f}_{s}^{e} : External (Gravity, Fluid Surface, ..) Forces
- ${\bf Q}\,$: Thermal Stress Matrix
- \mathbf{T} : Nodal Temperatures

FSI: Coupling Strategies 5

SOLID REGION (2)

3

Split Into Degrees of Freedom:

- f: On Fluid Surface
- s: Remaining Ones

$$\begin{cases} \mathbf{LHSS}_{ff} \ \mathbf{LHSS}_{fs} \\ \mathbf{LHSS}_{sf} \ \mathbf{LHSS}_{ss} \end{cases} \cdot \begin{pmatrix} \Delta \dot{\mathbf{X}}_{f} \\ \Delta \dot{\mathbf{X}}_{s} \end{pmatrix} = \\ \begin{pmatrix} \mathbf{f}_{f} \\ \mathbf{f}_{s} \end{pmatrix}^{i} + \begin{pmatrix} \mathbf{f}_{f} \\ \mathbf{f}_{s} \end{pmatrix}^{e} + \begin{pmatrix} \mathbf{L} \cdot (\mathbf{s}_{f} + \Theta \Delta \mathbf{s}_{f}) \\ 0 \end{pmatrix} + \\ \begin{pmatrix} \mathbf{Q}_{f}(\mathbf{T} + \Theta \Delta \mathbf{T}) \\ \mathbf{Q}_{s}(\mathbf{T} + \Theta \Delta \mathbf{T}) \end{pmatrix} \end{cases}$$

- $\mathbf{L} \hspace{0.1 cm}: \hspace{0.1 cm} \text{Load Matrix}$
- \mathbf{s}_f : Fluid Stresses on Surface

FLUID REGION (1)

$$\mathbf{LHSF} \cdot \Delta \mathbf{U} = \left(\frac{1}{\Delta t}\mathbf{M}_f + \theta_f \mathbf{J}\right) \Delta \mathbf{U} = \mathbf{f}^i + \mathbf{f}^e$$

 \mathbf{U} : Vector of Unknowns

 \mathbf{M}_f : Mass Matrix

- $\mathbf{\tilde{J}}$: Jacobian of Discretized Fluxes
- **f** : Internal and External Forces

FLUID REGION (2)

Split Into Degrees of Freedom: s : On Solid Surface

f : Remaining Ones

$$egin{cases} \mathbf{LHSF}_{ss} \ \mathbf{LHSF}_{sf} \ \mathbf{LHSF}_{fs} \ \mathbf{LHSF}_{ff} \end{bmatrix} \cdot \begin{pmatrix} \Delta \mathbf{U}_s \ \Delta \mathbf{U}_f \end{pmatrix} = \ \begin{pmatrix} \mathbf{f}_s \ \mathbf{f}_f \end{pmatrix}^i + \begin{pmatrix} \mathbf{f}_s \ \mathbf{f}_f \end{pmatrix}^e \end{split}$$

6

FSI: Coupling Strategies 8

CONTINUITY ACROSS DOMAINS (1)

1. Temperatures: CTD \rightarrow CSD

 $\mathbf{T}_s = \mathbf{I}_{st}\mathbf{T}_t$

 \mathbf{I}_{st} : 3-D Interpolation Matrix

2. Temperatures: CTD \rightarrow CFD

$$\mathbf{T}_f = \mathbf{I}_{ft} \mathbf{T}_t$$

 \mathbf{I}_{ft} : Surface to Surface Interpolation Matrix

3. Velocities: CSD \rightarrow CFD

$$|\mathbf{v}_f|_{\Gamma_s} = \mathbf{I}_{fs} \mathbf{v}_s = \mathbf{I}_{fs} \dot{\mathbf{X}}_s$$

 \mathbf{I}_{ft} : Surf-Surf Interpolation Matrix

FSI: Coupling Strategies 9

CONTINUITY ACROSS DOMAINS (2)

7

4. Thermal Loads: $CFD \rightarrow CTD$

 $\mathbf{q}_f = \mathbf{G}_{tf}\mathbf{U}_f + \mathbf{G}_{ts}\mathbf{U}_s$

5. Mechanical Loads: CFD \rightarrow CSD

$$\mathbf{s}_f = \mathbf{G}_{sf}\mathbf{U}_f + \mathbf{G}_{ss}\mathbf{U}_s$$

ASSEMBLED SYSTEM (1)

$\mathbf{LHSC} \cdot \begin{pmatrix} \Delta \mathbf{T}_{f} \\ \Delta \mathbf{T}_{t} \\ \Delta \dot{\mathbf{X}}_{f} \\ \Delta \dot{\mathbf{X}}_{s} \\ \Delta \mathbf{U}_{s} \\ \Delta \mathbf{U}_{f} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_{f} \\ \mathbf{f}_{s} \\ \mathbf{f}_{f} \\ \mathbf{f}_{f} \\ \mathbf{f}_{s} \end{pmatrix}^{i} + \begin{pmatrix} \mathbf{f}_{f} \\ \mathbf{f}_{s} \\ \mathbf{f}_{f} \\ \mathbf{f}_{f} \\ \mathbf{f}_{s} \end{pmatrix}^{e} + \mathbf{RHSC} \cdot \begin{pmatrix} \mathbf{T}_{f} \\ \mathbf{T}_{t} \\ \dot{\mathbf{X}}_{f} \\ \dot{\mathbf{X}}_{s} \\ \mathbf{U}_{s} \\ \mathbf{U}_{f} \end{pmatrix}$

ASSEMBLED SYSTEM (2)

 $\mathbf{LHSC} =$

LHS	\mathbf{ST}_{ff} I	\mathbf{HST}_{ft}	0	0	$-\Theta \mathbf{L} \mathbf{G}_{ts}$	$-\Theta \mathbf{LC}$
\mathbf{LH}	\mathbf{ST}_{tf} 1	\mathbf{LHST}_{tt}	0	0	$-\Theta \mathbf{G}_{ss}$	$-\Theta \mathbf{C}$
$-\Theta \mathbf{C}$	$\mathbf{Q}_f \mathbf{I}_{ft}$ –	$\Theta \mathbf{Q}_f \mathbf{I}_{ft}$	\mathbf{LHSS}_{ff}	\mathbf{LHSS}_{sf}	0	
$-\Theta$	$\mathbf{Q}_s \mathbf{I}_{ft}$ –	$\Theta \mathbf{Q}_s \mathbf{I}_{ft}$	\mathbf{LHSS}_{fs}	\mathbf{LHSS}_{ss}	0	
	0	0	0	0	\mathbf{LHSF}_{ss}	LHSI
l	0	0	0	0	\mathbf{LHSF}_{fs}	LHSF

11

FSI: Coupling Strategies 12

REQUIREMENTS/PRIORITIES

10

- General Position/Load Transfer
 - Optimal Methods
 - Optimal Grids
- Modular (Codes/Modules Exchangable)
- General Transient
 - Steady State Possible
- Extendable
 - Multi-Macro-Physics (CEM, CTD, ..)
 - Multi-Micro-Physics (Length/Time)
 - Control
 - Optimization
- Fast Multidisciplinary Problem Definition
- Insightful Visualization

FSI: Coupling Strategies 13

CONSEQUENCES (1)

- General Position/Load Transfer \Rightarrow
 - Arbitrary Grid Transfer
 - Ability to Deal With Different Levels of Abstraction
- Modular \Rightarrow
 - Minimum 'Discipline Code' Modification
 - Loose Coupling Approach
 - Load/ Position Transfer Standards/ Protocols
- General Transient \Rightarrow - Time-Domain Formulation

CODES USED (1)

- Do Not Re-Write CFD/CSD/CTD/... Codes
- Take Codes That Are:
 - Well Proven
 - Benchmarked
 - Debugged
 - Documented
 - Supported
 - (Public Domain)
 - Have a User Base/ Community
- Perform a Loose Coupling \Rightarrow
 - Interpolation
 - Projection
- Provide Intergrated Pre/Post

14

CONSEQUENCES (2)

- Fast Multidisciplinary Problem Definition \Rightarrow

- Fully Automatic Grid Generation for

Arbitrary Geometrical Complexity

- Seamless Integration/Problem Definition

- CFD and CSD Visualization in Same

- Loose Coupling Approach

for CFD/CSD

- Insightful Visualization \Rightarrow

Package

- Extendable \Rightarrow

FSI: Coupling Strategies 16

- CFD
- FEFLO (Comp/Inco) - CSD - FEEIGEN (Modal) - COSMIC-NASTRAN (Linear) (Exp. Nonlinear) - DYNA3D (Exp. Nonlinear) - GA-DYNA (Imp. Nonlinear) - NIKE3D - CTD COSMIC-NASTRAN /**T** · `

-	COSMIC-NASTRAN	(Linear)
-	FEHEAT	(Nonlinear)

Loose Coupling

FSI: Coupling Strategies 17

LOOSE COUPLING/STAGGERED SOLUTION

- Solve for CFD with imposed \mathbf{v}_{sf}
- Solve for CSD with imposed \mathbf{s}_{sf} and $\mathbf{M}_{fs} \cdot \mathbf{v}_{sf}^{\cdot}$
- If Error Too Large: Iterate
- Added Mass:
 - Negligible for Solid + Air
 - $[1:10^3 1:10^4]$
 - Non-negligible for Solid + Water $\left[1:10\right]$

\Rightarrow MINIMAL CODE RE-WRITE

LOOSE COUPLING/STAGGERED SOLUTION

1. Navier Stokes \rightarrow Euler By Setting:

$$\mathbf{v}_{fs} = \mathbf{v}_{fs}^t + \mathbf{v}_{fs}^n$$

Impose:

$$\mathbf{v}_{fs}^n = \mathbf{v}_{fs}^n$$

- 2. Timestepping via Loose Coupling:
 - Explicit CFD and CSD: Negligible Error
 - Implicit CFD or CSD: LHS Jacobians \Rightarrow Iterate
 - Steady-State: No Error

18

FSI: Surface Tracking 1

POSITION/VELOCITY TRANSFER

<u>Why</u>:

- Optimal Grid for Each Discipline \Rightarrow Different Grid Types/Sizes

Typical Position Transfer Problem

19

FSI: Surface Tracking 2

POSITION/VELOCITY TRANSFER ISSUES

Desired:

- Geometric Fidelity

$$\mathbf{x}_f \approx \mathbf{x}_s$$
; $\mathbf{v}_f \approx \mathbf{v}_s$

- Speed
- Generality
- Ability to Deal With Lower Dimensionality Abstractions
- Error Indicators

SURFACES NOT SEPARATED (GLUED)

- $\mathbf{x}_1 = \mathbf{x}_2 \Rightarrow \delta = 0$
- **x**, **v** Interpolated
 - Linear, Quadratic, Local Spline, Least Squares,...
- Typical Cases:
 - Large Deformation CSD, Euler CFD
 - Fine CSD/CFD Grids, Small
 - Deformations

QUADRATIC SURFACE RECOVERY

- Recover (Multiple) Normals at Points - Limiting Procedures for Normals
- Project Point Normal to Side
- Introduce Mid-Side Points
- Use Quadratic Shape-Functions
- $\begin{array}{l} N^1 = \zeta_1(2\zeta_1 1), \ N^2 = \zeta_2(2\zeta_2 1) \\ N^3 = \zeta_3(2\zeta_3 1) \\ N^4 = 4\zeta_1\zeta_2, \ N^5 = 4\zeta_2\zeta_3, \ N^6 = 4\zeta_1\zeta_3 \end{array}$

3 4

FSI: Surface Tracking 5

SURFACES SEPARATED, TRACKED (1)

- $\mathbf{x}_1 = \mathbf{x}_2 + \delta \mathbf{n}$

- **x**, **v** Interpolated
- Linear, Quadratic, Local Spline, Least Squares,...
- n Updated
- Face, Normal, Averages, Rotations,...
- Typical Cases:
 - Doubly Loaded Wall
 - Aeroelasticity

FSI: Surface Tracking 6

SURFACES SEPARATED, TRACKED (2)

Face vs. Point Normals

 \Rightarrow Prefer Face Normals

ACCURACY STUDY (1)

deformed CFD mash deformed CFD mash deformed CFD mash

SURFACES SEPARATED, TRACKED (2)

Analytical Deformation Used

Different CSD Grids

FSI: Surface Tracking 9

ACCURACY STUDY (2)

Surface Representation

FSI: Surface Tracking 10

ACCURACY STUDY (3)

Comparison of Tracking Schemes

ACCURACY STUDY (4)

Smallest Element Size

\Rightarrow

Separated, Tracked Surfaces Allow for Very Coarse CSD Grids

11

FSI: Surface Tracking 13

DOUBLY DEFINED FACES (1)

Why: Doubly Loaded Shells

Unwrapping Doubly Loaded Shells

SURFACES SEPARATED, NOT TRACKED

- Typical Cases:
 - Transpiration B.C. for CFD
 - Acoustic Loading

Tracking of Surface Velocities

12

FSI: Surface Tracking 14

DOUBLY DEFINED FACES (2)

Given: List of Faces From CSD

Approach:

- Find Out the Doubly Defined Faces:
 - Linked List: Faces Surrounding Points
 - For Each Point: Get Faces & Check
- Define New Points and Consistent Surface Normals, Remembering Original CSD Points
- Add Thickness \Rightarrow Proper Position
- Interpolate

DOUBLY DEFINED FACES (3)

- Build: fsufa(nedfa,nface)
- For Multiple Neighbours:
 - Take 'Most Visible Neighbour' From Scalar Product

Most Visible Face

16

Transcribe: ipold \rightarrow ipnew (coord,etc.)

DOUBLY DEFINED FACES (4)

Initialize point array lpoin(1:npoin)=0

do iface=1,nface ! Loop over the faces
do inofa=1,nnofa ! Loop over the face-nodes

if(ipoin.gt.0) then

introduce a new point

ipold=ipoin ipnew=ipoin

ipold=ipoin npoin=npoin+1 ipnew=npoin

else

endif

if(lpoin(ipoin).eq.0) then

the point was left unconsidered:

ipoin=bface(inofa,iface) ! Point number

The point has not yet been surrounded \Rightarrow

As the point has already been surrounded and

FSI: CFD-CSD Load Transfer 1

INTERPOLATION FROM CFD TO CSD

- Known: $p_f = N_f^i p_{if}$
- Unknown: $N_f^i(\mathbf{x}_s)$
- \Rightarrow Interpolation From CFD to Known CSD Locations
- Simple
- Every CSD Point/Face Has a Load Value
- Non Conservative

15

FSI: Surface Tracking 17

DOUBLY DEFINED FACES (5)

Surround the point with faces obtained from fsufa that have point ipold in common Modify bface, setting entry of ipold to -ipnew lpoin(ipoin)=-1 ! Mark point as surrounded endif enddo enddo

Restore bface to positive values.

CONSERVATIVE LOAD TRANSFER (1)

Desired:

$$p_s(\mathbf{x}) \approx p_f(\mathbf{x})$$

 $\mathbf{f} = \int p_s \mathbf{n} d\Gamma = \int p_f \mathbf{n} d\Gamma$

Weighted Residual Statement:

$$p_s = N_s^i p_{is}$$
, $p_f = N_f^j p_{jf}$

<u>Or</u>:

$$\int N_s^i N_s^j d\Gamma p_{js} = \int N_s^i N_f^j d\Gamma p_{jf}$$

$$\mathbf{M}_c \mathbf{p}_s = \mathbf{r} = \mathbf{L} \mathbf{p}_f$$

2

FSI: CFD-CSD Load Transfer 4

CONSERVATIVE LOAD TRANSFER (3)

<u>Needed</u>:

$$\mathbf{Lp}_f = \int N_s^i N_f^j d\Gamma p_{jf}$$

Problem: Grids Are Not Nested

 $\Rightarrow \mathbf{Use}~\mathbf{Gaussian}~\mathbf{Quadrature}$

CONSERVATIVE LOAD TRANSFER (2)

WRM Conservative, As $\sum_i N^i_s(\mathbf{x}) = 1{:}$

$$\int p_s d\Gamma = \int N_s^j d\Gamma p_{js} = \int \sum_i N_s^i N_s^j d\Gamma p_{js}$$
$$= \sum_i \int N_s^i N_s^j d\Gamma p_{js} = \sum_i \int N_s^i N_f^j d\Gamma p_{jf}$$
$$= \int \sum_i N_s^i N_f^j d\Gamma p_{jf} = \int N_f^j d\Gamma p_{jf} = \int p_f d\Gamma$$

3

FSI: CFD-CSD Load Transfer 5

OPTION 1: LOOP OVER CSD FACES (1)

$$\begin{aligned} r^{i} &= \int N_{s}^{i} N_{f}^{j} d\Gamma p_{jf} \\ &= \sum_{s} A_{s} \sum_{qp} W_{qp} N_{s}^{i}(\mathbf{x}_{qp}) N_{f}^{j}(\mathbf{x}_{qp}) p_{jf} \end{aligned}$$

OPTION 1: LOOP OVER CSD FACES (2)

- Known: $N_s^i(\mathbf{x}_{qp})$
- Unknown: $p_f(\mathbf{x}_{qp}) = N_f^j(\mathbf{x}_{qp})p_{jf}$
- \Rightarrow Interpolation From CFD to Known CSD Locations
- Every CSD Point/Face Has a Load Value
- Non Conservative $(h_{CFD} < h_{CSD})$

OPTION 2: LOOP OVER CFD FACES (1)

$$r^{i} = \int N_{s}^{i} N_{f}^{j} d\Gamma p_{jf}$$
$$= \sum_{f} A_{f} \sum_{qp} W_{qp} N_{s}^{i}(\mathbf{x}_{qp}) N_{f}^{j}(\mathbf{x}_{qp}) p_{jf}$$

6

FSI: CFD-CSD Load Transfer 8

OPTION 2: LOOP OVER CFD FACES (2)

- Known: $p_f(\mathbf{x}_{qp}) = N_f^j(\mathbf{x}_{qp})p_{jf}$
- Unknown: $N_s^i(\mathbf{x}_{qp})$
- \Rightarrow Interpolation From CSD to Known CFD Locations
- Conservative
- Not Every CSD Point May Have a Load Value

```
(h_{CSD} < h_{CFD})

\Rightarrow Adaptive Gaussian Quadrature
```

FSI: CFD-CSD Load Transfer 9

OPTION 3: LOOP OVER CFD FACES, CONSTANT P

<u>Why</u>: Many CSD Codes Require Constant Face Loads

$$A_{is}p_{is} = \sum_{f} A_{f} \sum_{qp} W_{qp} P_{s}^{i}(\mathbf{x}_{qp}) p_{f}(\mathbf{x}_{qp})$$

- Known: $p_f(\mathbf{x}_{qp}) = N_f^j(\mathbf{x}_{qp})p_{jf}$
- Unknown: $N_s^i(\mathbf{x}_{qp})$
- \Rightarrow Interpolation From CSD to Known CFD Locations
- Conservative
- 1-Point Quadrature Sufficient
- Not Every CSD Face May Have a Load Value

ADAPTIVE GAUSSIAN QUADRATURE (1)

ADAPTIVE GAUSSIAN QUADRATURE (2)

- Before Projection: Monitor SizeDivide Accordingly
- Until Converged:
 - Project With Unit Pressure Diagnostics
 - Refine As Required
- Final Projection

10

FSI: CFD-CSD Load Transfer 12

ACCURACY STUDY (1)

Analytical Distribution:

$$p(x,y) = A\left[1 + \cos\left(\frac{(x-x_c)\pi}{x_0}\right)\right] \left[1 + \cos\left(\frac{(y-y_c)\pi}{y_0}\right)\right]$$

11

FSI: CFD-CSD Load Transfer 13

ACCURACY STUDY (2)

Error Measurements:

- 'Least Squares'

$$e_{LS} = \sqrt{\frac{\int_{\Omega_s} (p_f - p_s)^2 d\Omega}{\int_{\Omega_f} p_f^2 d\Omega}}$$

- 'Relative'

$$e^i = \frac{|p_f^i - p_s^i|}{p_f^i}$$

ACCURACY STUDY (3)

Grids Chosen:

ACCURACY STUDY (4)

Results for 3 Gauss Points per CFD Face

No Refinement \Rightarrow Too Few

FSI: CFD-CSD Load Transfer 16

ACCURACY STUDY (5)

14

Results for 3 Gauss Points per CFD Face

Uniform Refinement \Rightarrow Too Many

15

FSI: CFD-CSD Load Transfer 17

ACCURACY STUDY (6)

Adaptive Refinement (3QP)

ACCURACY STUDY (7)

Adaptive Refinement (3/7QP)

ACCURACY STUDY (8)

Loads and Error Distribution

19

18

FSI: CFD-CSD Load Transfer 20

MONOTONICITY PRESERVING TRANSFER

WRM Projection:

$$\mathbf{M}_{c}\mathbf{p}_{s}=\mathbf{r}=\mathbf{L}\mathbf{p}_{f}$$

- Consistent Mass:
 - Higher Accuracy
 - Possible Over/Undershoots
- Solved Iteratively As:

$$\mathbf{M}_l \mathbf{p}_s^{i+1} = \mathbf{r} + (\mathbf{M}_l - \mathbf{M}_c) \mathbf{p}_s^i$$
, $i = 1, niter$

- $\mathbf{p}^0 = 0$

- Usually: niter = 3

FSI: CFD-CSD Load Transfer 21

PFCT (1)

Observations:

- Need to Iterate With M_l Anyhow
- First Pass:

$\mathbf{M}_l \mathbf{p}^l = \mathbf{r}$

- Lumped Mass:
 - Lower Accuracy
 - Less Over/Undershoots

Key Ideas:

- Low-Order Scheme: M_l -Projection
- High-Order Scheme: M_c -Projection
- Monotonicity Via FCT

SHOCK-PLATE INTERACTION (1)

Problem Definition and Surface Grids

23

FSI: CFD-CSD Load Transfer 25

SHOCK-PLATE INTERACTION (3)

Comparison of Impulses

PFCT (2)

- Compute Low-Order Projection

$$\mathbf{M}_l \mathbf{p}^l = \mathbf{r}$$

- Compute Antidiffusive Flux:

$$d = (\mathbf{M}_l - \mathbf{M}_c)\mathbf{p}^h$$

- Limit Antidiffusive Flux via FEM-FCT:

$$d' = c_l d$$

- Add Antidiffusive Flux:

$$\mathbf{M}_l \mathbf{p} = \mathbf{M}_l \mathbf{p}^l + d$$

22

FSI: CFD-CSD Load Transfer 24

SHOCK-PLATE INTERACTION (2)

Results Obtained

SHOCK-PLATE INTERACTION (4)

Comparison of Forces

Desired:

- Accuracy
- $\sigma_s(\mathbf{x}) \approx \sigma_f(\mathbf{x})$

LOAD/FLUX TRANSFER ISSUES

- Conservation

$$\mathbf{f} = \int \sigma_s \mathbf{n} d\Gamma = \int \sigma_f \mathbf{n} d\Gamma$$

- Speed [Interpolation, Adaptive Quadrature]
- Generality
- Ability to Deal With Lower Dimensionality Abstractions

26

FSI: Force/Position Transfer 2

POSITION/VELOCITY TRANSFER ISSUES

Desired:

- Geometric Fidelity

$$\mathbf{x}_f \approx \mathbf{x}_s$$
; $\mathbf{v}_f \approx \mathbf{v}_s$

- Glued (Linear, Quadratic, Least Squares,..)
- Separated (Initial Distance, Normal Rotation,..)
- Speed
- Generality
- Ability to Deal With Lower Dimensionality Abstractions
- Error Indicators

FSI: Force/Position Transfer 3

ACCURACY + CONSERVATION OF WHAT ?

1

Accuracy:

$$\mathbf{v}_f(\mathbf{x}) pprox \mathbf{v}_s(\mathbf{x})$$

 $\sigma_s(\mathbf{x}) pprox \sigma_f(\mathbf{x})$

Energy:

$$W = \int \mathbf{v}_s^t \cdot \boldsymbol{\sigma}_s \cdot \mathbf{n} d\Gamma = \int \mathbf{v}_f^t \cdot \boldsymbol{\sigma}_f \cdot \mathbf{n} d\Gamma$$

ACCURACY + CONSERVATION OF WHAT ?

Forces:

$$\mathbf{f} = \int \sigma_s \cdot \mathbf{n} d\Gamma = \int \sigma_f \cdot \mathbf{n} d\Gamma$$

Moments:

$$\mathbf{m} = \int \mathbf{r} \times \sigma_s \cdot \mathbf{n} d\Gamma = \int \mathbf{r} \times \sigma_f \cdot \mathbf{n} d\Gamma$$

FORCE CONSERVATION (1)

- For Clarity: Use
$$p$$

- WRM
- $\sum_i N_s^i(\mathbf{x}) = 1$
 $p_s = N_s^i \hat{p}_{is}$, $p_f = N_f^j \hat{p}_{jf}$
 $\int N_s^i N_s^j \mathbf{n} d\Gamma \hat{p}_{js} = \int N_s^i N_f^j \mathbf{n} d\Gamma \hat{p}_{jf}$

$$\mathbf{M}_{ss}\hat{\mathbf{p}}_s = \mathbf{r} = \mathbf{L}_{sf}\hat{\mathbf{p}}_f$$

4

FSI: Force/Position Transfer 6

FORCE CONSERVATION (2)

$$\int p_s \mathbf{n} d\Gamma = \int N_s^j \mathbf{n} d\Gamma \hat{p}_{js} = \int \sum_i N_s^i N_s^j \mathbf{n} d\Gamma \hat{p}_{js}$$
$$= \sum_i \int N_s^i N_s^j \mathbf{n} d\Gamma \hat{p}_{js} = \sum_i \int N_s^i N_f^j \mathbf{n} d\Gamma \hat{p}_{jf} =$$
$$\int \sum_i N_s^i N_f^j \mathbf{n} d\Gamma \hat{p}_{jf} = \int N_f^j \mathbf{n} d\Gamma \hat{p}_{jf} = \int p_f \mathbf{n} d\Gamma$$

<u>Remarks</u>:

- May Violate Moment Conservation
- May Violate Energy Conservation

5

FSI: Force/Position Transfer 7

ENERGY CONSERVATION (1)

Continuous:

$$W = \int \mathbf{v}_s^t \cdot \sigma_s \cdot \mathbf{n} d\Gamma = \int \mathbf{v}_f^t \cdot \sigma_f \cdot \mathbf{n} d\Gamma$$

Discrete:

$$W = \hat{\mathbf{v}}_{is}^t \cdot \int N_s^i N_s^j \mathbf{n} d\Gamma \hat{\sigma}_{js} = \hat{\mathbf{v}}_{if}^t \cdot \int N_f^i N_f^j \mathbf{n} d\Gamma \hat{\sigma}_{jf}$$

 \Rightarrow

$$\hat{\mathbf{v}}_{s}^{t}\mathbf{M}_{ss}\hat{\sigma}_{s}=\hat{\mathbf{v}}_{f}^{t}\mathbf{M}_{ff}\hat{\sigma}_{f}$$

FSI: Force/Position Transfer 9

ENERGY CONSERVATION (2)

Given Velocity:

$$\hat{\mathbf{v}}_f = \mathbf{I}_{fs} \hat{\mathbf{v}}_s$$

$$\mathbf{M}_{ss}\hat{\sigma}_s = \mathbf{I}_{fs}^t \mathbf{M}_{ff}\hat{\sigma}_f$$

<u>Remarks</u>:

- May Violate Force Conservation
- May Not be Locally Accurate

ENERGY CONSERVATION (3)

Given Forces:

$$\hat{\sigma}_s = \mathbf{L}_{sf} \hat{\sigma}_f$$

$$\mathbf{M}_{ff}\hat{\mathbf{v}}_f = \mathbf{L}_{sf}^t \mathbf{M}_{ss} \hat{\mathbf{v}}_f$$

<u>Remarks</u>:

- May Lead to Non-Smooth Deformations
- May Not be Locally Accurate

8

FSI: Interpolation Algorithms 1

INTERPOLATION ALGORITHMS

Why:

- Remeshing
- Multi-Disciplinary Code Coupling
- Boundary Conditions from Discrete Data
- Visualization

 ${\rm FSI:\ Interpolation\ Algorithms}\qquad 2$

INTERPOLATION

9

Basic Idea: Shape-Function Values of Coordinates

<u>Given</u>:

- Element *el* With Shape-Functions/Nodes: N^i, \mathbf{x}_i
- Point With Coordinates \mathbf{x}_p

Then:

$$\mathbf{x}_p = \sum_i N^i \mathbf{x}_i$$

Point In Element Iff:

$$\min(N^i, 1 - N^i) > 0 \quad , \quad \forall i$$

Interpolation

BRUTE FORCE

<u>Given</u>:

- Elements and Points of Known Grid
- Point of Unknown Grid
- Other Info
 - None

<u>Then</u>:

- Vector-Loop Over the Elements of Known Grid, Checking

4

<u>Remarks</u>:

- Fastest 1-Time Start Algorithm

3

FSI: Interpolation Algorithms 5

FSI: Interpolation Algorithms 6

Spatial Ordering of Point Data

OCTREE SEARCH

Given:

- Elements and Points of Known Grid
- Point of Unknown Grid
- Other Info:
 - Octree of Points of Known Grid
 - List of Elements Surr. Points of Known Grid

<u>Then</u>:

- Get Close Points of Known Grid From Octree
- Check Elements Surr. Close Points

<u>Remarks</u>:

- Fastest N-Time Start Algorithm
- \Rightarrow Fastest Algorithm for Points

FSI: Interpolation Algorithms 8

Nearest Neighbour Search

Possible Problems With Neighbour Data

7 8

FSI: Interpolation Algorithms 9

NEIGHBOUR-TO-NEIGHBOUR (NNS)

<u>Given</u>:

- Elements and Points of Known Grid
- Point of Unknown Grid
- Other Info:
 - List of Neighbour Elements of Known Grid
 - Start-Element in Neighbourhood IESTA

Then:

- N.1 Compute Shape-Functions for IESTA
- N.2 If Not In IESTA:
 - Set **IESTA** To Neighbour Associated With $min(N^i)$; - Goto N.1

Endif

<u>Remarks</u>:

- Fastest Algorithm for Known Vicinity
- \Rightarrow Fastest Algorithm for Grid-Grid Transfer

FSI: Interpolation Algorithms 10

Possible Problems With NNS

Advancing Front Vicinity Algorithm

11

FSI: Interpolation Algorithms 13

ADVANCING FRONT VICINITY ALGORITHM (2)

Then:

- A.1 Mark Elements and Points of Unknown Grid as Untouched
- A.2 Initialize List of Front Points for Unknown Grid
- A.3 Select Next Non-Interpolated Point From Front IPUNK
- A.4 Obtain Starting Element IESTA in Known Grid
- A.5 Attempt Nearest Neighbour Search for NTRY Attempts;
 - IF Unsuccessful: Use Brute Force
 - IF Unsuccessful: Stop or Skip
 - \Rightarrow IEEND

ADVANCING FRONT VICINITY ALGORITHM (1)

<u>Idea</u>: If Mesh to Mesh Interpolation Desired: Advance Interpolation Front Using NNS

Given:

- Elements and Points of Known Grid
- Elements and Points of Unknown Grid
- Other Info:
 - List of Neighbour Elements of Known Grid
 - List of Elements Surr. Points for Unknown Grid

12

FSI: Interpolation Algorithms 14

ADVANCING FRONT VICINITY ALGORITHM (3)

- A.6 Store Shape-Functions and Host Elements
- A.7 Loop Over Elements Surrounding IPUNK:
 - IF: Element Has Not Been Marked:
 - Mark the Element
 - Loop Over the Points of This Element:
 - IF: the Point Has Not Been Marked:
 - Store IEEND as Starting Element
 - For This Point;
 - Include This Point In Front;
 - ENDIF
 - ENDIF
- A.9 Mark Point IPUNK as Interpolated and GOTO A.3

IMPROVEMENTS

- Inside-Out Interpolation

- Prefer Interior Points

- Vectorization
- Layering of Brute Force Search
 - Octree
 - Brute Force With Boundary Elements
 - Brute Force With Complete Mesh
- Concavity Measures
- Different Domains $(\mathbf{x}_2 \text{ Not in } \Omega_1)$

INSIDE-OUT INTERPOLATION

Problem:

- Brute Force Search at Edges/Ridges/Corners

Key Ideas:

- Interpolate First Interior Points
- From Interior \rightarrow Boundary Points
 - $\Rightarrow \operatorname{Know}\,\operatorname{Proximity}\,$

Inside-Out Interpolation

16

15

FSI: Interpolation Algorithms 17

VECTORIZATION (1)

Key Ideas

- Interpolate Many Points At the Same Time
- Advance in Layers
- Work on 'Remaining List of Points'
- Refresh List When Depleted

FSI: Interpolation Algorithms 18

VECTORIZATION (2)

- V.0 Set Remaining Number of Points NPREM=NPFRT
- V.1 Perform Interpolation Checks in Vector Mode for NPREM
- V.2 Write the NPNXT Points with No Host Elements into LPCUR(1:NPNXT); If NPNXT=0: Stop.
- V.3 Write the NPREM-NPNXT Points with Host Elements into LPCUR(NPNXT+1:NPREM)
- V.4 Reorder Arrays with LPCUR \Rightarrow Remaining Points in 1:NPNXT
- V.5 Set NPREM=NPNXT and go to V.1.

Concave Boundaries

19

MEASURING CONCAVITY

<u>Why</u>: Concave Surfaces $\Rightarrow O(N_b^2)$ -Search

Idea: Measure Concavity and Proximity

- Measure Used: Visibility of Neighbouring Faces

 $d = \alpha |min(0, \mathbf{n} \cdot (\mathbf{x}_0 - \mathbf{x}_i))|$, $0.5 < \alpha < 1.5$

Measuring Concavity

20

FSI: Interpolation Algorithms 21

Problems...

FSI: Interpolation Algorithms 22

DIFFERENT DOMAINS (1)

Problem:

- Interpolation Impossible
 - \Rightarrow Brute Force Search Triggered

Interpolation With Different Domains

DIFFERENT DOMAINS (3)

DIFFERENT DOMAINS (2)

Key Ideas:

- Form Bins
- Mark Bins Covered by Elements of Known Grid
- Mark Points of Unknown Grid in Bins Not Covered by Known Grid
- Do Recursively ('Telescoping')
 - Obtain Min/Max Bins of Marked Points
 - Redo Bin

Marking Impossible Points

24

FSI: Interpolation Algorithms 26

23

FSI: Interpolation Algorithms 25

DIFFERENT DOMAINS (3)

Interpolate Impossible Points:

- Advancing Layers (+Isotropic)
- Upstream (Ma > 1)
- User-Prescribed Subroutine
- Closest Known Point

CPU-scalar

0.1399

0.5360

1.1290

0.9905

CPU-

0.028

 0.110^{-1}

0.340

0.202

BFS

0

0

31

0

SURFACE-GRID TO SURFACE-GRID

Given: Two Surface Triangulations

- Treat Topology as 2-D
- Treat Neighbour Search as 2-D
- Use Relative Distance Criterion for Normal Distance

Surface-Surface Interpolation

Surface-Surface Interpolation

28

27

Interpolation Timings

NELEM₂

30,801

160,355

243,068

243,068

FSI: Interpolation Algorithms 29

BASIC PROCEDURE(1)

Surface-Surface Interpolation

FSI: Interpolation Algorithms 30

BASIC PROCEDURE(2)

Point On Face Iff:

a)

$$min(\alpha^{i}, 1 - \alpha^{i}) \ge 0$$
, $\forall i = 1, 2, 4$ (1.a)

b)

$$d_n = \left| \alpha^3 \mathbf{g}_3 \right| \le \delta_n \tag{1.b}$$

Table 1

Cube₁ 34,661

Cube₂ 34,661

 $Train_1 \ 180,\!670$

 $Train_2 180,670$

 $NELEM_1$

Case

ISSUES (1)

- a) Proper Choice of δ_n :
 - What is Close Enough ?
 - Relative/Absolute Distance ?
 - Used Successfully:

$$\delta_n < c_n \cdot |\mathbf{g}_1 \times \mathbf{g}_2|^{0.5}$$
, $c_n = 0.05$

 c_n : May be Problem Dependent

ISSUES (2)

b) <u>Convex Ridges/Corners</u>:

- Closeness Criterion May Never Be Satisfied
- \Rightarrow Take Closest Face

c) <u>Concave Ridges/Corners</u>:

- Closeness Criterion May Be Satisfied By More Than One Face
- \Rightarrow Compare And Take Smallest d_n

31

FSI: Interpolation Algorithms 33

a) Concave Ridge (No Host Face)

b) Convex Ridge (Multiple Host Faces)

FSI: Interpolation Algorithms 34

EXHAUSTIVE SEARCH

32

Triggered at Corners, Multi-Body Configurations Consider all Faces Satisfying:

a)

$$min(\alpha^{i}, 1 - \alpha^{i}) \ge \alpha_{es} < 0$$
, $\forall i = 1, 2, 4$ (2.a)

b)

$$d_n = \left| \alpha^3 \mathbf{g}_3 \right| \le \delta_{es} \tag{2.b}$$

 \Rightarrow

$$(\alpha_{es} = -1, c_{es} = 0.5)$$

- Keep the Face Closest to the Point

- If Eqn.(1) Satisfied $\Rightarrow \delta = d_n$
- If Eqn.(1) Not Satisfied \Rightarrow Take Closest Distance to Face

$$\delta = \min_{ij} |\mathbf{x}_p - (1 - \beta_{ij})\mathbf{x}_i - \beta_{ij}\mathbf{x}_j|$$
$$\beta_{ij} = \frac{(\mathbf{x}_p - \mathbf{x}_i) \cdot (\mathbf{x}_j - \mathbf{x}_i)}{(\mathbf{x}_j - \mathbf{x}_i) \cdot (\mathbf{x}_j - \mathbf{x}_i)}$$

LOCAL EXHAUSTIVE SEARCH (1)

Triggered at Corners, Ridges

- a) <u>Case 1</u>: IF1 Satisfies Eqn.(1), But IF2 Better
- b) <u>Case 2</u>: IF1, IF2 Have Same Distance
 - \Rightarrow Prefer Face With Eqn.(1a) Satisfied (IF2)

LOCAL EXHAUSTIVE SEARCH (2)

 \Rightarrow

After Finding Face:

- Perform Local Exhaustive Search
- Consider All Faces Surrounding the Points of the Face

35

FSI: Interpolation Algorithms 37

TREATMENT OF THIN SURFACES

Why: For Shells

Interpolation With Thin Surfaces

Problem: Face on the 'Wrong Side' May be Closest

Solution: For Smooth Portions of the Surface

- Define Point Normal \mathbf{n}_p
- Only Consider Faces Aligned With Point Normal

$$\mathbf{n}_f \cdot \mathbf{n}_p > c_s$$
 , $c_s = 0.5$

 ${\rm FSI: \ Case \ Studies: \ 6DOF \ 1}$

F-16 FUEL TANKS (1)

- CFD Code: FEFLO
 - Compressible Euler
 - ALE, Mesh Movement/Remeshing
- Coupling:
 - Compute Loads
 - Move Fuel Tanks
- Machine: SGIO2K - 1-8 Procs
- Year: 1996
- Ref: AIAA-97-0166 (1997)

FSI: Case Studies: 6DOF 5

F-16 FUEL TANKS

CANOPY EJECTION (1)

- CFD Code: FEFLO
 - Compressible Euler
 - ALE, Mesh Movement/Remeshing
- Coupling:
 - Compute LoadsMove Canopy
- Machine: SGIO2K - 1-8 Procs
- Year: 1996
- Ref: AIAA-97-1885 (1997)

23

CANOPY EJECTION (2)

FSI: Case Studies: 6DOF 4

CANOPY EJECTION (3)

CANOPY EJECTION (4)

Canopy Ejection: Comparison of Runs

CANOPY EJECTION (5)

Canopy Ejection: Comparison of Runs

FSI: Case Studies: 6DOF 8

CANOPY + 2 PILOT EJECTION (1)

- CFD Code: FEFLO
 - Compressible Euler
 - ALE, Mesh Movement/Remeshing
- Coupling:
 - Compute Loads
 - Force for Rocket Thrusters
 - Move Canopy + Pilots
- Machine: SGIO3K - 8-16 Procs
 - 0 10 1 10
- Year: 1996
- Ref: Proc. 1st ICCFD, Kyoto, 387-392 (2000)

FSI: Case Studies: 6DOF 9

CANOPY + 2 PILOT EJECTION (2)

CANOPY + 2 PILOT EJECTION (3)

SINK+TRIM FOR SHIPS (1)

- CFD Code: FEFLO
 - Incompressible Euler
 - Mesh Movement/Interface Tracking
 - 400Ktet
- Coupling:
 - Run to Flow to Steady-State
 - Compute Loads
 - Move Ship
- Machine: SGIO2K - 1-8 Procs
- Year: 2001
- Ref: IJCFD 16, 3, 217-227 (2002)

10

11

FSI: Case Studies: 6DOF 12

SINK+TRIM FOR SHIPS (2)

Series 60 Hull: Surface Mesh

FSI: Case Studies: 6DOF 13

SINK+TRIM FOR SHIPS (3)

Series 60 Hull: Convergence of Sinkage and Trim

SINK+TRIM FOR SHIPS (4)

Series 60 Hull: Sinkage and Trim vs. Froude-Nr.

FSI: Case Studies: 6DOF 16

SHIP ADRIFT IN WAVES (1)

- CFD Code: FEFLO
 - Incompressible Euler
 - Mesh Movement/VOF
 - 3.4Mtet
- Coupling:
 - Wave Generator Upstream
 - Compute Loads
 - Move Ship
 - Full 6DOF
- Machine: SGI Altix - 4 Procs
- Year: 2005
- Ref: AIAA-06-0291 (2006)

Series 60 Hull: Wavedrag for Fixed and Free Model

15

 ${\rm FSI:\ Case\ Studies:\ 6DOF\ }17$

SHIP ADRIFT IN WAVES (2)

LNG TANKER ADRIFT IN WAVES (1)

- CFD Code: FEFLO
 - Incompressible Euler
 - Mesh Movement/VOF
 - Wall Contact
 - 2.7Mtet
- Coupling:
 - Tanks 80% Full (Sloshing)
 - Wave Generator Upstream
 - Compute Loads
 - Move Ship
 - Full 6DOF
- Machine: Dell P4 - 3.2Ghz, 2Gbyte, Intel F, Linux OS
- Year: 2005
- Ref: AIAA-06-0291 (2006)

18

FSI: Case Studies: 6DOF 20

LNG TANKER ADRIFT IN WAVES (3)

Position of Center of Mass

Roll Angle vs. Time

LNG TANKER ADRIFT IN WAVES (2)

19

FSI: Case Studies: Linear CSD 1

TACOMA BRIDGE SECTION (1)

- CFD Code: FEFLO
 - Incompressible (381Ktet)
 - ALE, Mesh Movement
 - Laminar/MILES
 - $\rho=1.25kg/m^3, \mu=0.1kg/m/sec$
 - $\mathbf{v}_{\infty} = (10.0, 0.0, 0.0) m/sec$
- CSD Code: FEEIGEN
 - Quad Shells
 - 2 Modes (Heave, Torsion)
- Coupling:
 - Position: Linear, Glued
 - Loads: Projection of Stresses
- Machine: Dell P43.2Ghz, 1Gbyte, Intel F, Linux OS
- Year: 2003
- Ref: AIAA-05-1093 (2005)

TACOMA BRIDGE SECTION (2)

Bridge Section: Dimensions and Typical Flowfield

TACOMA BRIDGE SECTION (3)

Bridge Section: Eigenforces and Eigenmodes

3

 $\mathbf{2}$

FSI: Case Studies: Linear CSD 4

TACOMA BRIDGE (1)

- CFD Code: FEFLO
 - Incompressible (8.5Mtet)
 - ALE, Mesh Movement
 - Laminar/MILES
 - $\rho = 1.25 kg/m^3, \mu = 0.1 kg/m/sec$
 - $\mathbf{v}_{\infty} = (10.0, 0.0, 0.0)m/sec$
- CSD Code: FEEIGEN
 - Quad Shells
 - 2 Modes (Heave, Torsion)
- Coupling:
 - Position: Linear, Glued
 - Loads: Projection of Stresses
- Machine: SGIO3K
- 16 Procs
- Year: 2003
- Ref: AIAA-05-1093 (2005)

TACOMA BRIDGE (2)

Bridge: Typical Flowfield

TACOMA BRIDGE (3)

Bridge: Velocity of Structure

TACOMA BRIDGE (4)

Bridge: Eigenforces and Eigenmodes

FSI: Case Studies: Linear CSD 8

TACOMA BRIDGE (5)

Bridge: Work Exchanged Between Fluid and Solid

FSI: Case Studies: Nonlinear CSD 1

SHOCK-CYLINDER INTERACTION

- Mild Steel (Elastic/ Ideal Plastic)
- Strong Shock
- CSD FEM Model: 2.3 Kqshells
- CFD FEM Model: 20 Kpts, 100 Ktets

4-ROOM EXPERIMENT

- Reinforced Concrete
- Explosion in Room 1
- CSD FEM Model 1
 - Average Quantities (No Re-Bars)
 - From Split Tetrahedra
 - 50 Kbricks
- CSD FEM Model 2
 - Detailed Quantities
 - Re-Bars
 - Regular Bricks (Hand-Made)
 - 50 Kbricks
- CFD FEM Model: 260 Kpts, 1.3 Mtets
- Ref:

TRUCK (1)

- Good Example For Geometrical Complexity
- AutoCad Data
- Simplifying Assumptions for CSD:
 - Engine, Transmission, Shafts: Rigid Solids
 - Springs and Tires: Elasto/Plastic/ Viscoplastic Solids
 - No C^3 Info
 - No Door Handles, Mirrors, etc.

 $\mathbf{2}$

FSI: Case Studies: Nonlinear CSD 4

TRUCK (2)

- Final CAD Model For CSD (1 Week):
 - 5,928 Points
 - 3,000 Lines
 - 1,386 Surfaces
- CAD Model for CFD: Automatic Step
 - Retain CSD Wetted Surfaces
 - Unwrap Doubly Defined Surfaces
- Final CAD Model For CFD (1/2 Day):
 - 6,306 Points
 - 3,718 Lines
 - 1,604 Surfaces

FSI: Case Studies: Nonlinear CSD 5

TRUCK (3)

- Same Mesh Generator for CSD and CFD
- CSD FEM Model:
 - 1 K beams
 - 50 Kq shells
 - 50 Kbricks
 - 22 Materials
- CFD FEM Model:
 - 200 Kpoints
 - 1 Mtets

TRUCK (4)

- CFD Code: FEFLO
 - FEM-FCT
 - ALE/Remeshing
- CSD Code: DYNA3D
 - Beams, Quad Shells, Hex Solids
 - Elasto-Plastic
- Coupling:
 - Position: Linear, Glued
 - Loads: Conservative Projection of Pressures
- Computer: CRAY-C90 [What Else ?]
- Year: 1995
- Ref: AIAA-96-0795 (1996)

6

FSI: Case Studies: Nonlinear CSD 8

TRUCK (6)

FSI: Case Studies: Nonlinear CSD 9

TRUCK (7)

FSI: Case Studies: Nonlinear CSD 11

TRUCK (8)

WEAPON FRAGMENTATION (1)

- CFD Code: FEFLO
 - FEM-FCT
 - JWL EOS for HE
 - H-Refinement and Remeshing
- CSD Code: GA-DYNA - Failure Criterion: Plastic Energy/Work
- Coupling:
 - Position: Linear, Glued
 - Loads: Conservative Projection of Pressures
- Machine: SGIO3K - 16-48 Procs
- Year: 1999
- Ref: IJNMF 31, 113-120 (1999)

10

FSI: Case Studies: Nonlinear CSD 12

WEAPON FRAGMENTATION (2)

Fragmenting Weapon at 131msec

FSI: Case Studies: Nonlinear CSD 13

WEAPON FRAGMENTATION (3)

Fragmenting Weapon at 310msec

WEAPON FRAGMENTATION (4)

AUP FRAGMENTATION STUDY (2)

WEAPON FRAGMENTATION (5)

Radial Velocity as a Function of Fragment Weight

15

14

MESH VELOCITY

Fragmenting Weapon at 500msec

FSI: Case Studies: Nonlinear CSD 16

= .500 n

FRAG. VELOCITY

WEAPON FRAGMENTATION (1)

- CFD Code: FEFLO
 - FEM-FCT
 - JWL EOS for HE
 - H-Refinement, Embedding
- CSD Code: GA-DYNA
 - Failure Criterion: Average Element Strain > 60%
- Coupling:
 - Position: Linear, Embedded
 - Loads: Interpolation of Pressures
- Machine: SGIO3K
 - 16-48 Procs
- Year: 2003
- Ref: IJNME 60, 641-660 (2004)

FSI: Case Studies: Nonlinear CSD 17

WEAPON FRAGMENTATION (2)

- CFD Mesh
 - Start: 39 Mtet
 - End: 72 Mtet
- CSD Mesh
 - 66 Khex
 - 1,555 Fragments

WEAPON FRAGMENTATION (3)

CSD/Flow Velocity and Pressure/Mesh at 68 ms

18

CSD/Flow Velocity and Pressure/Mesh at 102 ms

FSI: Case Studies: Nonlinear CSD $\quad 20$

EXPLOSION CLOSE TO MODEL SHIP (1)

- CFD Code: FEFLO
 - FEM-FCT
 - JWL EOS for HE
 - H-Refinement, Embedding
- CSD Code: GA-DYNA
 - Quad Shells
 - Failure Criterion: Plastic Energy/Work
- Coupling:
 - Position: Linear, Embedded
 - Loads: Interpolation of Pressures
- Machine: SGIO3K
 - 16-48 Procs
- Year: 2001
- Ref: IJNME 60, 641-660 (2004)

 ${\rm FSI: \ Case \ Studies: \ Nonlinear \ CSD \qquad 21}$

EXPLOSION CLOSE TO MODEL SHIP (2)

Surface and Pressure in Cut Plane at 20msec

Surface and Pressure in Cut Plane at 50msec

 ${\rm FSI:\ Case\ Studies:\ CFD{+}CTD}{} 2$

HEATED CYLINDER (2)

Heated Cylinder: Surface of Fluid Domain

HEATED CYLINDER (1)

- CFD Code: FEFLO
 - Incompressible Navier-Stokes
 - $\rho = c_p = 1.0, \mu = k = 0.054$
 - $\mathbf{v} = (1.0, 0.0, 0.0)$
- CTD Code: FEHEAT - Tetrahedral Elements - $\rho = c_p = k = 1.0, s = 1.0$
- Coupling:
 - Temperature: Linear
 - Loads: Conservative Projection of Stresses/Fluxes
 - Run CFD/CTD Implicitly to Steady-State
- Machine: Dell P4 - 3.2Ghz, 1Gbyte, Intel F, Linux OS
- Year: 2004
- Ref: AIAA-05-1093 (2005)

1

FSI: Case Studies: CFD+CTD 3

HEATED CYLINDER (3)

Heated Cylinder: Plane z = 0.0

HEATED CYLINDER (5)

HEATED CYLINDER (4)

Heated Cylinder: Velocity (z = 0.0)

4

FSI: Case Studies: CFD+CSD+CTD 1

NOSE-CONE (1)

- CFD Code: FEFLO
 - Compressible RANS
 - Turbulence Model: Baldwin-Lomax
 - $M_{\infty} = 3.0, \, \alpha = 10^o, \, Re = 2 \cdot 10^6$
- CSD Code: COSMIC-NASTRAN
 - Quad Shells
 - Thermal Stresses
- Coupling:
 - Position: Linear, Glued
 - Loads: Conservative Projection of Stresses/Fluxes
 - Run CFD/CSD/CTD to Steady-State + Iterate
- Machine: SGIO2K
 - 1-4 Procs
- Year: 1996
- Ref: AIAA-98-2419 (1998)

Heated Cylinder: Temperature (z = 0.0)

5

 ${\rm FSI: \ Case \ Studies: \ CFD+CSD+CTD } \quad 2$

NOSE-CONE (2)

Nose-Cone: Surface Grids for CFD and CSD/CTD

NOSE-CONE (3)

Nose-Cone: CFD/CSD/CTD Results Obtained

3

FSI: Case Studies: CFD+CSD+CTD 5

THERMAL PROTECTION PANEL (2)

Panel: Grids for CFD and CSD/CTD

THERMAL PROTECTION PANEL (1)

- CFD Code: FEFLO
 - Compressible RANS
 - Turbulence Model: Baldwin-Lomax
 - $M_{\infty} = 3.0, \, \alpha = 10^o, \, Re = 2 \cdot 10^6$
- CSD Code: COSMIC-NASTRAN
 - Hexahedral Solids
 - Thermal Stresses
- Coupling:
 - Position: Linear, Glued
 - Loads: Conservative Projection of Stresses/Fluxes
 - Run CFD/CSD/CTD to Steady-State + Iterate
- Machine: SGIO2K - 1-4 Procs
- Year: 1996
- Ref: AIAA-98-2419 (1998)

FSI: Case Studies: CFD+CSD+CTD 6

THERMAL PROTECTION PANEL (3)

Panel: Results Obtained

PRE-PROCESSING: RESEARCH AREAS

- Multi-Format Input
- Virtual Reality Data Sets
- Surface Extraction from Voxel Data
- Fast Geometry Repair
- Very Large CAD Data Sets
- Automatic Abstraction

GRID GENERATION: RESEARCH AREAS

- Dirty Surface Meshing
- Good RANS Grids
- Wakes
- All Hex-Meshing
- Parallel Gridding

1

FSI: Research Areas 3

CFD: RESEARCH AREAS

- Turbulence Models
- Multigrid RANS
- High Order Schemes
- Link to High Knudsen-nrs.
- Dynamic Load Balancing
- Link to EM (Plasmas)
- Link to Surface Erosion/Etching

FSI: Research Areas 4

CSD: RESEARCH AREAS

 $\mathbf{2}$

- Tetrahedral Elements
- Triangular Plate Elements
- Multigrid/Fast Iterative Solvers
- Spalation/Breaking
- Link/Switch Continuum/Discrete
- Material Modeling
 - Concrete/Stone Failure
 - Pulverization
- Link to Atomic Scale

FSI: Research Areas 6

CTD: RESEARCH AREAS

- Multigrid/Fast Iterative Solvers
- Highly Nonlinear Materials
- Link to Atomic Scale

COUPLING: RESEARCH AREAS

- Conservation
- Treatment of Different Dimensional Abstractions