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Fluid-Structure-Coupling (FSI)

Fluid—incompressible Newtonian fluid (i.e. Navier-Stokes eqns.) in ALE

(Arbitrary Lagrangean-Eulerian) formulation: (plus boundary conditions)

in Ωf : %f (v̇ + (v − χ̇) · ∇v)− divσ +∇p = rf ,

2σ = ν(∇v + (∇v)T ) = 2ν∇sv, div v = 0,

Solid—large deformation elastic St. Venant material in Lagrangean

formulation: (plus boundary conditions)

in Ωs : %sü− DIV (FS) = rs, F = I + GRADu

S = λ(trE)I + 2µE, 2E = (C − I), C = FTF,

Arbitrary Lagrangean-Eulerian coordinate system:

in Ωf : Lχ = βΓu
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FSI Interface

Conditions on interface ΓI between Ωf and Ωs:

At spatial location χ(t) = χ0 + u(χ0, t) ∈ ΓI continuity of velocities:

v(χ(t), t) = u̇(χ0, t).

Variational formulation for velocity condition:∫
ΓI

τI · (v(χ(t), t)− u̇(χ0, t)) dΓI = 0

Conservation of momentum—balance of tractions:

(σ − pI) · n = −1
J
FSFT · n , J = detF .

Variational formulation for traction condition—treat like any other boundary

traction, boundary traction is equal to Lagrange multiplier τI.
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Coupled Problems

Coupled problems often combine the models of two or more physical systems,

they are multi-physics modells. Different approaches:

• Monolithical approach, which means one global model of everything

– Advantages: All encompassing theoretical and numerical treatment

– Disadvantages: Treatment is ever more complex, every time completely

new start, new algorithms, new software, does not scale, not modular

• Partitioned approach, which means separate models plus coupling

– Advantages: Complexity constrained to one physical domain, theory may

be well worked out, efficient numerical algorithms, existing sophisticated

software for each subsystem, modular, scalable

– Disadvantages: Subsystems have to be coupled together, new numerical

and algorithmic problems, coupling software necessary
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Pure Differential Coupling

The simplest case is pure differential coupling:

The first subsystem as evolution equation in some space X1:

ẋ1 = f1(x1, x2), x1 ∈ X1 ,

The second subsystem as evolution equation in some space X2:

ẋ2 = f2(x2, x1), x2 ∈ X2 ,

Combined nothing but a evolution equation for (x1, x2) ∈ X1 ×X2,

direct identification of differential variables in both subsystems.

Might have been produced by the partition of monolithic system,

or by combination of subsystems with identifiable variables
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Pure Explicit Coupling

Assume that subsystems have been discretised in time (and in space if

desired), assume for simplicity same time-step in both subsystems.

Approximation at time-step n denoted by x
(n)
j , (j = 1, 2),

with explicit or implicit time-discrete evolution ϕj, with functions Ψj(n, t) to

approximate evolution of variable xj in [tn, tn+1].

x
(n+1)
1 = ϕ1(x

(n)
1 ,Ψ2(n, t)),

x
(n+1)
2 = ϕ2(x

(n)
2 ,Ψ1(n, t)),

Ψj(n, t) most easily produced by extrapolation of past values of x
(m)
j .

Simplest is constant extrapolation—pure weak or loose coupling (switching):

Ψj(n, t) ≡ x
(n)
j , (j = 1, 2)
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Explicit Coupling—Switching

• Advantages:

– Absolutely simple,

– Can be performed in parallel.

• Disadvantages:

– Critical time step will appear or may decrease,

– In case of simple Ψj(n, t) only first order accurate in ∆t,
– “Better” extrapolation Ψj(n, t) for higher order decreases stability limit.

Resembles the block Jacobi or

additive Schwarz iteration for equation solution.
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Explicit Coupling—Staggering

To achieve a better method—partly implicit—take as before

Ψ2(n, t) ≡ x
(n)
2 giving x

(n+1)
1 ,

but then—in a predictor-corrector fashion—to give the

basic staggering method:

Ψ1(n, t) = x
(n+1)
1 .

This means subsystem 1 is solved as before,

but subsystem 2 gets response at new time level.

Resembles the block Gauss-Seidel or

multiplicative Schwarz iteration for equation solution.
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Implicit Coupling

For stability reasons it may be advantageous to use implicit coupling,

x
(n+1)
1 = φ1(x

(n+1)
1 , x

(n)
1 ,Ψ2) ,

x
(n+1)
2 = φ2(x

(n+1)
2 , x

(n)
2 ,Ψ1) ,

Ψj(n, t) including still unknown x
(n+1)
j —strong or tight coupling—

simplest case purely constant extrapolation:

Ψj(n, t) ≡ x
(n+1)
j , (j = 1, 2),

requires global iteration—simplest case as before in time-stepping: in Jacobi or

additive Schwarz fashion, or in Gauss-Seidel or multiplicative Schwarz fashion.

• Advantages: May be globally unconditionally stable, may be higher order in

∆t without compromising stability, same results as monolithical approach.

• Disadvantages: Requires global iteration, but will converge for small ∆t.
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Differential-Algebraic Coupling

Assume that subsystems are differential-algebraic equations (DAEs) with local

differential variables x1 ∈ X1, local algebraic variables y1 ∈ Y1:

ẋ1 = f1(x1, y1, z) ,

0 = g1(x1, x2, y1, z) ,

same for the second subsystem with local differential variables x2 ∈ X2, local

algebraic variables y2 ∈ Y2:

ẋ2 = f2(x2, y2, z) ,

0 = g2(x2, x1, y2, z) .

Coupling conditions formulated as “algebraic” constraints with global

algebraic variables z ∈ Z:

0 = h(x1, x2, y1, y2, z) .
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Differential-Algebraic Regularity

Assume that each single subsystem, and also global system is an index-1 DAE.

This means that the operator matrices

Dyj
gj ,

[
Dyj

gj Dzgj

Dyj
h Dzh

]
, (j = 1, 2) ,

[
Dyg Dzg

Dyh Dzh

]
have to be regular, where Dq is the partial derivative w.r.t. q,

and we have set g = (g1, g2)T and y = (y1, y2)T .

After time discretisation—we time-discretise DAEs with an implicit

method—we have a global system of equations:

(x(n+1)
1 , y

(n+1)
1 )T = Φ1(x

(n+1)
1 , x

(n)
1 , y

(n+1)
1 , y

(n)
1 , z(n+1), z(n)) ,

(x(n+1)
2 , y

(n+1)
2 )T = Φ2(x

(n+1)
2 , x

(n)
2 , y

(n+1)
2 , y

(n)
2 , z(n+1), z(n)) ,

0 = h(x(n+1)
1 , x

(n+1)
2 , y

(n+1)
1 , y

(n+1)
2 , z(n+1))
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Discrete Form of Fluid-Structure-Interaction

The Fluid and the ALE-Domain:

Mf v̇ +N(v − χ̇)v +Kfv +Bfp = rf + T T
f τI; ,

BT
f v = 0 ,

Kgχ = Au .

The Solid:

M sü+Ks(u)u = rs − T T
s τI .

The Interface:

T fv = T su̇ .

Equality of interface tractions on coupling interface already included in terms

T T
f τI and T T

s τI.
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The DAE Correspondence I

ẋ1 = f1(x1, y1, z) ,

0 = g1(x1, x2, y1, z) ,

The Fluid and the ALE-Domain: (with b := v̇, the fluid accel.) and ψ = χ̇:

x1 :=
[
v

χ

]
, y1 :=

bp
ψ

 , f1 :=
[
b

ψ

]
, z := τI ,

g1 :=

 Mfb+Nf(v − ψ)v +Kfv +Bfp− rf − T T
f τI

−BT
fM

−1
f (−Nf(v − ψ)v −Bfp−Kfv + rf + T T

f τI)
Kgψ −Aw

 ,
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The DAE Correspondence II

ẋ2 = f2(x2, y2, z) ,

0 = g2(x2, x1, y2, z) .

The Solid: (with a := ẇ = ü, the structural acceleration):

x2 :=
[
u

w

]
, y2 := a , f2 :=

[
w

a

]
, z := τI

g2 := M sa+Ks(u)u− rs + T T
s τI; ,

0 = h(x1, x2, y1, y2, z) .

The Interface: h := T fb− T sa.

TU Braunschweig Institute of Scientific Computing



15

Equivalence of Iteration and Time-Stepping

Discretised dynamical system with state x(n) at time levels n ·∆t
with the time advance operator x(n+1) = ϕ(x(n)).

A stationary state or equilibrium x∗ is fixed point for x∗ = ϕ(x∗),
it is asymptot. stable (x(n) n→∞−→ x∗) iff |λj| < 1 for all eigenvalues of Dϕ(x∗).

This is actually a method to compute the steady state or equilibrium,

often used in CFD (sometimes called dynamic relaxation).

An iteration method is an abstract dynamical system,

each iteration xk + 1 = ψ(xk) corresponds to one time step.

Iteration converges iff |λj| < 1 for all eigenvalues of Dϕ(x∗).

Equivalent with stability of time-stepping scheme for given ∆t.
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Time-Stepping and Iteration

Solution process (iteration) for x(n+1) = φ(x(n+1),x(n)) is a

discrete dynamical system x
(n+1)
κ := ψ(x(n+1)

κ−1 ).

Will converge if |λj| < 1 for all eigenvalues of Dψ(x(n+1))
⇒ ψ is a contraction.

Convergence of this iteration and stability of time-stepping may be

investigated with same theory.

Weak coupling/ simple switching corresponds (in simple case is equal to)

strong coupling/ block-Jacobi iteration.

Weak coupling/ basic staggering corresponds (in simple case is equal to)

strong coupling/ block-Gauss-Seidel iteration.
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Global Equations for Strong Coupling

Coupling condition h = 0 usually adjoined to one subsystem.

Set ξ := (x1, y1, z)T = (v, χ, b, p, ψ, τI)T

and ζ := (x2, y2)T = (u,w, a)T to include interface in first equation,

otherwise include z = τI in ζ and not in ξ.

Assume that convergent iterative solvers for subsystems exist:

ξκ = F 1(ξκ−1, ζ) , and ζκ = F 2(ζκ−1, ξ) , κ = 1, 2, . . . ;

Simplest solution process is nonlinear block-Jacobi,

an additive or parallel Schwarz procedure (corresponds to simple switching):

ξκ = F ν1
1 (ξκ−1, ζκ−1) ,

ζκ = F ν2
2 (ζκ−1, ξκ−1) ;
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Nonlinear block-Gauss-Seidel

Almost as simple is nonlinear block-Gauss-Seidel,

a multiplicative or serial Schwarz procedure (corresponds to basic staggering):

ξκ = F ν1
1 (ξκ−1, ζκ−1) , and with new ξκ, do ζκ = F ν2

2 (ζκ−1, ξκ) .

Theorem:[Arnold, Günther] In block-G-S, let L be Lipschitz-constant of Ψj,

and let

α = max
t∈[0,T ]

‖ (Dy2g2)
−1
Dzg2

(
Dy1h (Dy1g1)

−1
Dzg1

)−1

Dy2h‖ ,

the iteration only converges if α < 1, and if at least κ iterations are performed

so that Lακ < 1, and the total global time-step error δ is bounded by

δ < C(µmax{0,κ−2}ψ(x) + µκ−1ψ(y)) + ε1(x) + ε2(y),

ψ is extrapolation error, εj is subsystem integrator error, and

µ = α+O(∆t) < 1.
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Eliminating one Variable

One may see block-G-S in the following way:

F ν1
1 : ζκ−1 → ξκ,

followed by: (ξ becomes “internal”)

F ν2
2 : ξκ 7→ ζκ.

In toto, there is a mapping on ζ alone:

S : ζκ−1 → ζκ

ζ may be just the variables on interface.

Fixed-point of the map S is part of the solution

The fixed-point equation may be solved by some other method

(e.g. Newton-Raphson, preconditioned/ modified Newton, Quasi-Newton, etc.)
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Different Possibilities for block-Gauss-Seidel

For different ordering and distribution of constraint, we have

• 1st fluid plus coupling, 2nd solid: α = ‖M−1
s T T

s (T fM̂
−1
T T

f )−1T s‖ ,,
where M̂

−1
= M−1

f (Mf −BfM̃pB
T
f )M−1

f is a Schur complement, and

M̃p = (BT
fM

−1
f Bf)−1. Note α ∝ %f/%s.

• 1st structure plus coupling, 2nd fluid: α = ‖M̂
−1
T T

f (T sM
−1
s T T

s )−1T f‖ .

Note α ∝ %s/%f .

• 1st fluid, 2nd solid plus coupling: α = ‖(T sM
−1
s T T

s )−1(T fM̂
−1
T T

f )‖ .

Note α ∝ %s/%f .

• 1st solid plus coupling, 2nd fluid: α = ‖(T fM̂
−1
T T

f )−1(T sM
−1
s T T

s )‖ .

Note α ∝ %f/%s.

α depends on ratio of %f and %s.
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Block-Newton

Desirable is an iteration scheme which will not depend on

ordering and distribution of constraint: Block-Newton.

In each block-Newton iteration following system has to be solved:[
I −DξF 1 DζF 1

DξF 2 I −DζF 2

] [
∆ξκ

∆ζκ

]
= −

[
ξκ − F 1(ξκ, ζκ)
ζκ − F 2(ζκ, ξκ)

]
.

Symbolic block-Gauss elimination:

∆ξ = −(I −DξF 1)−1(ξ − F 1(ξ, ζ))−C∆ζ ,

with the multiplier matrix C := (I −DξF 1)−1[DζF 1].

Further with Schur complement matrix S:

S∆ζ := (I − [DζF 2]− [DξF 2]C) ∆ζ = −r,
with r := (ζ − F 2(ζ, ξ)) + [DξF 2]q, q := −(I −DξF 1)−1(ξ − F 1(ξ, ζ)).
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Solving the Block-Newton System

Solution proceeds by Krylov method (Bi-CGstab):

• Solving a system with (I −DξF 1): Apply iterative solver F 1

• Same with C, plus finite differences for [DζF 1]

• Solving the Schur-complement system:

– Use Bi-CGstab.

– Compute r with iterating subsystem solver F 2;

– compute action of S by finite differences.

Theorem:[Mackens, Voss] If the single system solvers are quadratically

convergent (or enough iterations are made in the approximative steps), the

global iteration is also quadratically convergent.
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Quasi-Newton

Quasi-Newton methods are generalisations of secant method:

Hκ

[
∆ξκ

∆ζκ

]
= −

[
ξκ − F 1(ξκ, ζκ)
ζκ − F 2(ζκ, ξκ)

]
.

Easy to solve with Hκ (explicit inverse H−1
κ ).

Hκ changes by low rank only from step to step.

H−1
κ = H−1

κ−1 + aκ · bT
κ

a rank one update—or—a rank two update

H−1
κ = H−1

κ−1 + aκ · aT
κ + +bκ · bT

κ

aκ, bκ are easy to compute from known data
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A Simple Example
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Movement and Pressure Distribution
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Tip Displacement Response Weak Coupling
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Tip Displacement Response Strong Coupling
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Iteration Count
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Solver Calls
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Another Example

Material St.Venant: η = 0.2, E = El Navier-Lamé: η = 0.2, E = Er
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Iteration Count

El = 105, Er = 5 ∗ 104 El = 105, Er = 106 El = 5 ∗ 104, Er = 106

iter cpu[t]

Jacobi 18 10.9

Gauss-Seidel 14 7.9

BFGS 12 6.8

Newton 3 13.5

iter cpu[t]

Jacobi ∞ -

GS 28 16.0

BFGS 8 4.8

Newton 3 13.7

iter cpu[t]

Jacobi ∞ -

GS ∞ -

BFGS 25 13.4

Newton 12 52.0
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A More Involved Example—OWECS
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Some of the Subsystems

Fluid flow
NWT code
Matlab

Soil
Felt code

C

Unbounded Soil

Fortan
Similar code

Laplace Solver
FastLap code

Fortan

Structure 
and

WKA code

Matlab

Wind
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Subsystems of Offshore-Wind-Turbine I

Wind Stochastic wind model in frequency domain.

Wind/ Blade-Structure Blade element theory for the turbine blades.

Simple force and torque balance in decoupled rotor disk annuli.

Blade/ Nacelle & Tower Manages non-inertial rotating co-ordinate systems,

one for each blade, one each for nacelle, tower. Structure-structure

coupling. (Plus generator, control, etc.).

Random Waves/ Fluid-Fluid Coupling To prevent parasitic reflected waves

and get the right random properties ⇒ three wave domains.

Deep water, only linear incident waves—shallower water, nonlinear incident

and linearised refracte waves—shallow water, fully nonlinear waves and FSI.
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Subsystems of Offshore-Wind-Turbine II

Deep Water Linear Airy waves for deep water in spectral description.

Shallower Water Nonlinear incident wave, linear perturbation refracted

wave. Potential flow. FE-model for free surface, fast multipole BEM

solver for water below.

Shallow Water Fully nonlinear wave, both for incident and refracted wave.

Potential flow. FE-model for free surface, fast multipole BEM solver for

water below.

Wave/ Tower Potential Flow—Free Surface/ Tower Coupling.

Tower/ Soil Coupling tower/ pile FE-model with a near field FE-model of the

soil.

Soil/ Soil Near field FE-model of soil coupled with far-field SBFEM code.
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Wave Domains

Domain 2
Domain 1

Absorbing zone

Domain 3
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Some of the OWECS Models

Structure description is standard large displacement beam model, in

non-inertial (co-rotational) reference systems. Soil is linear elastic solid.

Blade element theory is simple mass flow—momentum and rotational

momentum , and mass conservation in each rotor annulus independently,

together with measured / previously calculated profile data (CL, CD, CM).

Waves—Potential flow with free surface:

Fluid velocity v(x, t) = ∇Φ(x, t) with potential Φ, and for all t: ∇2Φ = 0.

Free surface described by level set function F (x, t) = 0.

Eikonal equation for free surface ∂tF/|∇F | movement has to match

normal velocity of fluid v · n with n = −∇F/|∇F |:

v · n = −∇Φ · ∇F
|∇F |

!=
∂tF

|∇F |
⇔ DF

dt
:= ∂tF + v · ∇F = 0.
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Conclusions

• staggering algorithms may introduce critical time step

• coupling may introduce algebraic constraints

• DAEs are different from pure differential coupling

• block-Gauss-Seidel depends strongly on ordering

– in purely differential case may be made convergent with small ∆t
– in DAE case may be unconditionally unstable

• Newton-like methods are more robust (and may be faster)
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