
Software Component Architecture
Rainer Niekamp

Institute for Scientific Computing

TU Braunschweig

Contents:

• About Software Components

– What is it?

– Why use them?

• Software Component Architectures

• The Component Template Library (CTL)

– central idea: the generalisation of linkage

– main functionalities and their usage

1

Contents:

• Examples of Coupled Simulations

– a Simulation Interface

– algebraic solvers for coupled systems

– the mapping of a (multi) physical system to an running distributed ap-
plication

– multiscale simulation

– high dimensional integration

2

What is a Software Component ?

• A piece of software offering (via an interface) a predefined service and
which is able to communicate with other components.

• Criteria (by Clemens Szyperski and David Messerschmitt) for software
components:

– Multiple-use => parallel execution

– Non-context-specific => exchangeable

– Composable with other components

– Encapsulated i.e., non-investigable through its interfaces

– A unit of independent deployment and versioning

3

History of Software Components

• So-called software crisis in the sixties

• The idea to componentize prefabricated software first published at the
NATO conference on software engineering in Garmisch, Germany, 1968
titled Mass Produced Software Components by Douglas McIlroy

• Subsequent inclusion of pipes and filters into the Unix operating system

• The modern concept of a software component largely defined by Brad Cox
of Stepstone, => Objective-C programming language

• IBM: System Object Model, SOM in the early 1990s.

•Microsoft: OLE and COM

• Today, several successful software component models exist

4

Reasons to use Components

• Growing number of (freely) available libraries and programs worth to be
re-used

• Exchangeable software units

• Support of distributed parallel run time systems

• Avoids linkage of may be incompatible libraries

• Longer lifetime of implementations

5

Explicit Message Passing versus Remote Method Invocation

Explicit Message Passing using MPI, PVM, MPCCI:

• Coupling programs by explicit message passing needs inserting of com-
munication points into source code => source and expertise for each pro-
gram needed

• No seperation of communication and algorithm => difficult maintenance
of code

• Each new pair of coupling produces amount of programming

Remote Method Invocation based on Components:

• Needs component framework

• Keeps functional programming style

• Exchangeability of coupled components

• Type safe communication

6

Differences from object-oriented programming

• Idea in object-oriented programming (OOP): software represents a men-
tal model of real world objects and interactions in terms of ’nouns’ and
’verbs’

• Software componentry accepts that the definitions of components build
from existing software, unlike objects, can be counter-intuitive (but use-
ful!)

7

Software Component Architectures

Common Object Request Broker Architecture(CORBA)

• Distributed object specification by the Object Management Group (OMG).

• Own communication protocol (IIOP)

• Special languages for defining interfaces, (IDL).

• Implementations available in many programming languages.

interface Perf
{
typedef sequence<double> doublearr;
doublearr send (in doublearr a);

};

8

Architecture of CORBA

9

JavaRMI

• Part of the standard Java SDK by Sun.

• Uses Java interfaces as definition language of the remote interfaces =>
limited to be used by Java applications only

• Available since JDK 1.02

• Similar to CORBA in its complexity.

import java.rmi.Remote;
import java.rmi.RemoteException;
public interface Perf extends Remote
{

double[] send (double[] a)throws RemoteExcep-
tion;
}

10

Architecture of Java-RMI

11

Common Component Architecture

• A fairly new high-performance and distributed computing framework.

• Developed in December 1998 by US national energy laboratories and re-
search laboratories from the Universities of Utah and Indiana, sponsored
by the Department of Energy (DOE).

• CCA is focused on scientific computing

• Provides prebuilt components

• Defines a standard for communication and component retrieval, as well
as the Scientific Interface Definition (SIDL) for defining component inter-
faces

• Does not enforce a specific implementation.

• The CCA forum provides a reference implementation with SIDL language
bindings for C, C++, Fortran, Java and Python

12

Microsoft .NET

• Framework offers two ways for distributed components.

– using SOAP as communication protocol
∗ For writing web services with .NET
∗ Compatible with SOAP implementations in other programming lan-

guages.

– The so-called Remoting
∗ Using a binary stream for communication.
∗ Providing a complete infrastructur for distributed objects.
∗ Interfaces for Remoting applications written in C# => limited to be

used by programming languages ported to the .NET runtime.

• .NET will replace the formerly used DCOM on the Windows platform.

• No explicit interface declaration, but given implicitly by the implementa-
tion.

13

XML-RPC

• Standard for simple remote procedure calls over TCP/IP networks using
HTTP as transport and XML as encoding

• No support for using distributed components

• No naming services

• Neither location nor access transparency

14

Further Related Technologies

• pipes and filters Unix operating system

• Component-oriented programming Visual Basic Extensions,

• OCX/ActiveX/COM and DCOM from Microsoft

• XPCOM from Mozilla Foundation

• VCL and CLX from Borland and similar free LCL library.

• Enterprise Java Beans from Sun Microsystems

• UNO from the OpenOffice.org office suite

• Eiffel programming language

• Oberon programming language

• BlackBox Compound document technologies Bonobo (a part of GNOME)

• Object linking and embedding (OLE)

• OpenDoc Fresco Business object technologies

• 9P distributed protocol developed for Plan 9, and used by Inferno and other
systems.
•

15

• D-BUS from the freedesktop.org organization

• DCOM and later versions of COM (and COM+) from Microsoft

• DCOP from KDE

• DSOM and SOM from IBM

• Java EE from Sun

• Universal Network Objects (UNO) from OpenOffice.org

16

The CTL is

• first partially realised as part of the parallel FE-code ParaFep at the Insti-
tute of Structural and Numerical Mechanics in Hanover, 1995

• originally thought as an enhancement of C++

• a template (header) library like the STL=⇒ no further libraries or tools
are needed

• an implementation of the component concept with an RMI semantic simi-
lar to CORBA or Java-RMI.

• a tool for component building from existing libraries

• suitable for High Performance computing on parallel hardware

• also usable by C or FORTRAN programs

• compared with CORBA very easy to use

#define CTL_Class Perf
#include CTL_ClassBegin

#define CTL_Method1\
array<real8>,send,(const array<real8>/*a*/),1

#include CTL_ClassEnd

17

The CTL supports the concepts of processes, process groups with intra- and
inter-communication, point to point communication in stream semantic as
well as the following C++ features in a remote sense:

• remote libraries, a remote library is a C++ namespace

• remote class, as a C++ class

• remote template classes, as C++ class templates

• static remote methods, as static methods

• remote methods, as virtual methods

• remote construction, as class constructors

• remote functions, as global functions

• remote template functions, as global function templates

• function and operator overloading

STL types likestd::string, std::list, std::vector, std::set,
std::map can be used as arguments of remote methods and functions. Ar-
bitrary user defined types can be used by defining their IO-operators.

Any type checking is done at compile time.

18

The CTL uses the C-preprocessor and template-instantiation for the code gen-
eration.

The following communication protocols/linkage types are supported:

•MPI (Message Passing Interface),

• PVM (Parallel Virtual Machine),

• TCP/IP (directly via sockets).

• dynamic linkage

• threads

• pipes (to get through a firewall via ssh)

• daemon (connect to a running process)

• file (reasonable for dump of data to disc)

19

Further implemented features:

• high/low endian detection, 32bit and 64bit compatibility.

• IO of polymorphic types.

• IO of cyclic data structures.

• exception handling

• automatic control of the life-time of shared remote objects by reference
counting.

• automatic notification of the owner of a component (the component which
created the other one) of failure/exceptions.

• automatic control of the life-time of components by ownership.

• components are convertable to python moduls (using swig)

• automatic selection of components by a resource manager

20

Linkage and Dependencies (Classical Linkage versus Component Link-
age)

monolithic application

#include

compiling

linking

distributed application

direct call

communication

componentlibrary

modul.cc/fapplication.cc/f

modul.h

application.cc/f

application.exeapplication.exe

modul.a/soapplication.o

libmodul.so

application.o

connect.cc

connect.o

libmodul.exe

modul.ci

21

Function Call Overhead/Performance

The following software was used to compile and run the test applications:

CTL Intel compiler 8.1
PVM pvm3 3.4.3
MPI LAM-MPI 6.5.1

.NET remoting Mono 1.1.8.2
CORBA ORBit2 2.12.2
Java RMI Sun JDK 1.5.0 04

SOAP gSOAP 2.7.3 38

The measurement was done on a PC-Cluster with 18 Pentium4 (2.4GHz)
connected via GigaBit-Ethernet.

22

Function Call Overhead/Performance

call a function with the signature:

array<real8> f(const array<real8>);

(corresponds to the pingpong test)

0 Kbyte 2 Kbyte 20 Kbyte 200 Kbyte 2 Mbyte 20Mbyte 200 MByte
ctl/lib 2.3 ∗ 10−6 2.3 ∗ 10−6 2.3 ∗ 10−6 2.3 ∗ 10−6 2.3 ∗ 10−6 2.3 ∗ 10−6 2.3 ∗ 10−6

ctl/thread 1.0 ∗ 10−5 1.0 ∗ 10−5 1.0 ∗ 10−5 1.0 ∗ 10−5 1.0 ∗ 10−5 1.0 ∗ 10−5 1.0 ∗ 10−5

ctl/tcp 2.5 ∗ 10−4 3.7 ∗ 10−4 5.2 ∗ 10−4 2.9 ∗ 10−3 2.9 ∗ 10−2 2.8 ∗ 10−1 2.8 ∗ 100

ctl/lam 2.0 ∗ 10−3 1.9 ∗ 10−3 2.0 ∗ 10−3 1.0 ∗ 10−2 7.6 ∗ 10−2 6.9 ∗ 10−1 6.3 ∗ 100

ctl/pipe 3.8 ∗ 10−4 6.2 ∗ 10−4 2.0 ∗ 10−3 1.0 ∗ 10−2 8.7 ∗ 10−2 8.5 ∗ 10−1 8.5 ∗ 101

ctl/mpi 3.0 ∗ 10−4 3.5 ∗ 10−4 7.7 ∗ 10−4 6.4 ∗ 10−3 7.2 ∗ 10−2 7.0 ∗ 10−1 5.8 ∗ 100

ctl/pvm 4.0 ∗ 10−4 5.0 ∗ 10−4 2.7 ∗ 10−3 2.9 ∗ 10−2 3.1 ∗ 10−1 2.5 ∗ 100 1.9 ∗ 101

.net 4.8 ∗ 10−2 1.4 ∗ 10−2 5.1 ∗ 10−2 4.3 ∗ 10−1 4.3 ∗ 100 none none
corba 1.7 ∗ 10−3 4.6 ∗ 10−4 8.3 ∗ 10−4 4.0 ∗ 10−3 2.8 ∗ 10−2 2.7 ∗ 10−1 2.7 ∗ 100

java rmi 1.5 ∗ 10−3 1.3 ∗ 10−3 2.0 ∗ 10−3 6.5 ∗ 10−3 1.2 ∗ 10−1 4.3 ∗ 100 none
soap 2.1 ∗ 10−2 2.0 ∗ 10−2 2.1 ∗ 10−2 5.3 ∗ 10−2 4.9 ∗ 10−1 none none

23

Function Call Overhead/Performance

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000 1e+06

se
c

kbyte

lib+conversion
thread+conversion

tcp
lam

pipe
mpi

pvm
dotnet
corba

java-rmi
soap

24

GigaBit in the Top 500

The GigaBit technology is predominantly used but has non optimal perfor-
mance.

Percentage of GigaBit Nets

Percentage of GigaBit Power

25

Data Serialisation
If two software-components have to exchange structured data types without
sharing any data type declaration an abstraction concerning binary represen-
tation is needed. The mean ideas are

• any structured type is a composition of simpler types

• there are only a few compositions

• to read a structured data only its binary representation is needed

fundamentals

The fundamental types defined in the CTL are:

the integral types

char = bool with values in {0,1}
char=int1, int2, int4, int8
unsigned char =uchar=uint1, uint2, uint4, uint8

and the float types

real4, real8

26

ctl::array

template<class T> class array;

serialisation as

os< <int8(vec.size());
for(int8 i=0; i<vec.size; i++)

os< <vec[i];

examples

std::vector<T,Alloc>: array<T>
std::set<T, Cmp, Alloc>: array<T>
std::list<T, Alloc>: array<T>

ctl::empty

struct empty {};
oStream &operator< <(oStream &os,const empty&)
{ return os; }

27

ctl::tupel

template<class T0, class T1=empty,..., class Tmax=empty>
class tupel;

T0 t0;
T1 t1;
...
Tmax tmax;
os< <t0< <t1< <...< <tmax;

examples

std::complex<T> : tupel<T,T>
std::pair<S,T> : tupel<S,T>
struct info
{

int n;
float x,y;
CTL_Type(info, tupel, (n,x,y), 3)

}; : tupel<int,float,float>

map<key,val,Cmp,Alloc> : array<tupel<key,val> >

28

ctl::cstring

template<class T> class cstring;
while(!!str[i])

os< <str[i++];
os< <T();

examples

char *
std::string

29

ctl::reference

if(!t)
return os < < true < < int4(-1);

int4 log = os.getStreamId(t);
if(log>0) // t is already in the stream

return os < < true < < log;
os.addReference(t);
os< <false;
const char *typeName=typeName<T>(*t);
if(!typeName)

return os< <std::string();
os < < std::string(typeName);
os < < binarySize(*t) < < *t;

examples

std::auto_ptr<T>: reference<T>
T*: reference<T>

30

A Simulation Interface
#define CTL_Class simu
#include CTL_ClassBegin

//// must be implemented ////

// init simulation with "filename" as starter file
#define CTL_Method1 void, init, (const string /*filename*/), 1

// get parameter
#define CTL_Method2 void, getparam, (array<real8> /*p*/), 1

// set parameter
#define CTL_Method3 void, setparam, (const array<real8> /*p*/), 1

// get state variables into x
define CTL_Method4 void, getstate, (array<real8> /*x*/) const, 1

// set state variables to x
#define CTL_Method5 void, setstate, (const array<real8> /*x*/), 1

// set load of system
#define CTL_Method6 void, setload, (const array<real8> /*load*/), 1

31

// get coupling indices i and values y (boundary cond. or load or. ...)
#define CTL_Method7 void, getcoupling, (array<int4> /*i*/,\

array<real8> /*y*/) const, 2

// set coupling values y (boundary cond. or load or. ...)
#define CTL_Method8 void, setcoupling, (const array<real8> /*y*/), 1

// compute residuum at given state and write it into r
#define CTL_Method9 void, residual, (array<real8> /*r*/) const, 1

// solve with given param, load, coupling values with at least accuracy
// and set new state; write the new state into x
define CTL_Method10 void, solve,\

(const real8 /*accuracy*/, array<real8> /*x*/), 2

//// might be implemented (but define at leat empty functions) ////

// compute a timestep and set new state; write new state into x_new
define CTL_Method11 void, timestep,\

(const real8 /*dt*/, array<real8> /*x_new*/), 2

// compute a preconditioning step on vector r and write result into pr
define CTL_Method12 void, precond, (const array<real8> /*r*/,\

array<real8> /*pr*/) const, 2

32

// compute the directional derivative in x0
// in direction dx and write it into dr

define CTL_Method13 void, dirderivative, (const array<real8> /*x0*/,\
const array<real8> /*dx*/, array<real8> /*dr*/) const, 3

include CTL_ClassEnd

• formulated in the interface description format of the Component Template
Library CTL.

• Usable by C, Fortran and C++ codes

Requirements to a simulation code

• its functionality can be split into the functions listed in the interface above

• a method invocation has no more side-effects than those given in the com-
ments to this method above.

• the simulation components have the information in which manner which
degrees of freedom are coupled.

33

Algebraic solver for coupled systems

Given the global residual function:

Dirichlet Neumann
recv(ζΓ) send(ζΓ)

grid adapt(ξ, ζΓ)

res=residual(ξ) rInt=residual(ζ)

send(pΓ) recv(pΓ)

res=rInt + rExt(pΓ)

one can apply a nonlinear solver directly to the equilibrium equations like

• the quasi–Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

• inexact–Newton method using numerical differentiation

Having also access to the local solvers one can formulate

• the Jacobi– and Gauss–Seidel iterations

• block Newton methods solving the fixpoint equation given by the Newton
method

34

Limits of Weak Coupling Algorithms

Material StVenant:η = 0.2, E = El Navier–Lame:η = 0.2, E = Er

System might arise in the simulation of a gasket consisting of plastic ring as
the left and a metallic ring as the right part.

The lower left half of the left part is fixed by a homogeneous Dirichlet condi-
tion, the right side of the right part is uniformly loaded.

35

El = 105, Er = 5 ∗ 104 El = 105, Er = 106 El = 5 ∗ 104, Er = 106

iter cpu[t]
Jakobi 18 10.9

Gauss-Seidel 14 7.9
BFGS 56 6.8

Newton 3 13.5

iter cpu[t]
Jakobi ∞ -

GS 28 16.0
BFGS 44 4.8

Newton 3 13.7

iter cpu[t]
Jakobi ∞ -

GS ∞ -
BFGS 110 13.4

Newton 12 52.0

Due to the boundary conditions the left partial structure is much more dis-
torted and was simulated with a geometrically nonlinear formulation.

For the right part a linear formulation was chosen.

36

Assumptions of the Different Solvers

• The BFGS method needs only the residual function (viaresidu al) and
optionally a preconditioning.

• The inexact Newton–method needs the residual function, optionally a pre-
conditioning and also optionally the directional derivatives (viadirec-
tionalDerivation).

• The Gauss–Seidel and Jacobi–Iterations need only the simulation internal
solver (viasolve).

• The block–Newton method needs the solver, the residual and for the linear
iterative solver optionally directional derivatives of the residual

In the case that the method precond is not implemented, preconditioning is
not performed. In the case the methoddirectionalDerivation is not
implemented, numerical differentiation is used.

37

Dependencies of the Sources of the Components using block Newton

simuInterface.h

communication
by function call

communication
by function call

coupleSolver.cc/.c/.fsimuALink.cc simuBLink.cc

simuB.exe/.so

simuA.a/.so simuB.a/.so

simuA.exe/.so

simuA.h simuB.h

ctl.h

coupleSolver.exe

38

Multi Physics

Offshore Wind Turbine

rotor + tower(beam3D, C)

soil:near−field(felt, C)

soil:far−field(similar,Fortran)

wind(WKA, MatLab)

fluid with waves(fastlap, Fortran)

39

Offshore Wind Turbine/Components of the system

The Multi-Physical System and Control Units

•Wind

•Water/Waves

• Structure(Tower+Blades)

• Soil

• Interaction by exchange of energy, momentum

• Control

40

Mathematical Models and Formulations

• Stochastic Wind

• Linear Formulation in the far field, nonlinear formulation in the near field
+ transition zone

• Tower as solids, blades as beams

• Linear Formulation in far field, non linear formulation of porous medium
in the near field
• In each timestep continuity constraints of displacement and velocity, equi-

librium of forces

41

The Numerical Methods

• Stochastic Wind Load

•Multipol method for the potential problem

• Finite Elements 3D for tower, beam(1D) for blades

• Scaled Finite Elements in the far field, non-linear 3D Finite Element for-
mulation in the near field

• Coupling by boundary conditions

42

Software Components

•MatLab generates random wind load

•Multipol solver FastLap solves the potential problem

• C-Code (WKA) computes the structural response

• Far field -> SIMILIAR , near field FELT2

• Remote Method Invocation via CTL-Interfaces

43

Distributed Application/Hardware-Mapping

• Localhost/linux: Comp. Time <1%

• Server of wire/linux : Comp. Time ca. 40%

• Localhost/linux: Comp. Time <2%

• SGI at Institute of Applied Mechanics (TU-BS): Comp. Time ca. 55%

• Data Exchange using the TCP/IP protocol and Pipes: Comp. Time <3%

44

The Topology of Coupling

Soil

Wind

Water Structure

Dirichlet Neumanndisplacements
forces

Compared with the parts on the left hand side high density/stiffness of the
structural part ==> classical iteration schemes work

45

Discretisation of the Offshore Windkraft System

46

Meso–Macro coupling

used by Damijan Markovic and Adnan Ibrahimbegovic ,

at the Ecole Normale Superieure de Cachan, France.

using the Feap by Bob Taylor

Feap

Feap

Feap Feap Feap

�
�

� ��� �

�

�

coupling of the displacements using Lagrange–multipliers

47

High-dimensional Integration

Given a function

f : Rd → R

we want to approximate the integral

I(f) :=
∫
Ω f (x)dx, Ω ⊆ Rd

by a quadrature formular

Q(f) :=
n∑
k=1

wkf (xk)

The error is given by

eQ(f) := |I(f)−Q(f)|

48

Tensor product Formulars

The tensor product of one dimensional quadrature formulars is given by:

QP (f) := (Q1⊗Q2⊗· · ·⊗Qd)(f) :=
n1∑
i1=1
· · ·

nd∑
id=1

w1,i1 · · ·wd,idf (x1,i1, x2,i2, · · · , xd,id)

with given one dimensional quadrature formulars

Qi(f) :=
ni∑
k=1

wi,kf (xi,k)

The Smolyak formular of levell is given by:

QS(f) :=
∑

|k|≤l+d−1

(∆k1 ⊗∆k2 ⊗ · · · ⊗∆kd)(f)

using the notations

|k| :=
d∑
i=1
ki, k ∈ {1, · · · , l}d, ∆k(f) := Qk(f)−Qk−1(f) k = 2 · · · l, ∆1 := Q1

49

Monte Carlo Methods

The Monte Carlo Quadrature formulars are of the form:

QMC(f) :=
n∑
k=1

1

n
f (xk)

A Quasi Monte Carlo method uses a deterministic sequencesxk with low
discrepance.

The Monte Carlo method uses uniform distributed (pseudo-) random numbers
to generate the sequencexk.

50

Generated Grids

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K
oo

rd
in

at
e

y

Koordinate x

’Smolyak Algorithmus mit Gauss-Legendre Quadraturformel’

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K
oo

rd
in

at
e

y

Koordinate x

QMC Gitter aus Halton-Punkten

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K
oo

rd
in

at
e

y

Koordinate x

’MC Gitter’

51

Example: Butt Plate with Elliptic Inclusions

Ematrix : Einclusion = 1 : 104

52

Convergence Comparison (50 elliptic Inclusions)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

re
la

tiv
er

 F
eh

le
r

#Integrationspunkte

Monte Carlo
Quasi-Monte Carlo mit arithmetischer Punktfolge

Quasi-Monte Carlo mit Halton-Punktfolge

Convergence of the relative error ofexpectation(max ‖u‖)
The reference solution was computed by MC using 4.400.000 evaluations.

(Smolyak integration gives no reasonable results)
53

Distribution of max ‖u‖

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

#V
er

te
ilu

ng

#maximale Verschiebung u

Verteilung der maximalen Verschiebung bei 10 Ellipsen
Verteilung der maximalen Verschiebung bei 20 Ellipsen
Verteilung der maximalen Verschiebung bei 30 Ellipsen

54

Demo of Simple Coupled System (see Disc)

p
0

p
1

p
0

p
1

p
2

T=0dT/dx=1
Dirichlet coupling

simulation A simulation B

######## Simulation Selection File rsc.txt #########

simulator A for the left part
../C/simuC.so -l thread -f log/simuC.log
#../../feap/linux-gcc/libfeap.exe -l tcp -d ../../feap/run1/ -x

simulator B for the right part
../../feap/linux-gcc/libfeap.exe -x -l tcp -d ../../feap/run2
#../fortran/simuF.exe -l tcp
#pare3:~/ctl/examples3/feap/linux-gcc/libfeap.exe -d ../run2/

55

For further information and downloads see

www.wire.tu −bs.de/forschung/projekte/ctl/e_ctl.html

56

Demo of Simple Coupled System (also on Disc)
>scp -r nocosoflume@134.169.77.134:~/ctl .
(passwd: NoCoSoFluMe270406)
>ssh nocosoflume@134.169.77.134
>cp -r ctl <individual-name>
>cd ~/<individual-name>/lib/linux-gcc
>make D
>cd ~/<individual-name>/examples3/feap/linux-gcc
>make
>cd ~/<individual-name>/examples3/simu/fortran
>make
>cd ~/<individual-name>/examples3/simu/C
>make
>cd ~/<individual-name>/examples3/simu/solver
>make
>nedit rsc.txt
...
>./solver.exe

57

References
[1] Kristopher Johnson. Remoting.CORBA homepage. http:// remoting-corba. source-
forge.net/.

[2] Microsoft. Component Object Model Technologies. http://www.microsoft.com/com/.

[3] Marcus Meyer and Hermann G. Matthies: Non-linear Galerkin methods in the simulation
of the aeroelastic response of wind turbines, in: K.-J. Bathe (ed.): Proc. First MIT Conf. on
Computational Fluid and Solid Mechanics. Elsevier, Amsterdam, 2001.

[4] Hermann G. Matthies and Jan Steindorf: Strong Coupling Methods, in: W. L. Wendland
and M. Efendiev (Eds.), Analysis and Simulation of Multifield Problems. Lecture Notes in
Applied and Computational Mechanics, Vol 12. Springer-Verlag, Berlin, 2003.

[5] Markus Krosche and Rainer Niekamp and Hermann G. Matthies: A compo-nent based
architecture for coupling, optimisation, and simulation software in a distributed environment,
pp. 20 23 in: W. Dosch and R. Y. Lee (eds.), Proc. ACIS Fourth Int. Conf. on Software
Engrng., Artificial Intelligence, 9 Networking, and Parallel/Distributed Computing (SPND
03), 16 18 October 2003, Lübeck. ACIS, 2003. ISBN 0-9700776-7-X.

[6] Markus Krosche and Rainer Niekamp and Hermann G. Matthies: PLATON A problem
solving environment for computational steering of evolutionary optimisation on the GRID,
in: G. Bugeda and J. A. Désidéri and J. Periaux and M. Schoenauer and G. Winter (eds.),
Proc. Int. Conf. on Evolutionary Methods for Design, Optimisation, and Control with

58

Application to Industrial Problems (EUROGEN 2003). CIMNE, Barcelona, 2003.

[7] Damijan Markovǐc and Adnan Ibrahimbegović and Rainer Niekamp and Hermann G.
Matthies: A multi-scale finite element model for inelas-tic behaviour of heterogeneous struc-
tures and its parallel computing implementation, in: A. Ibrahimbegović and B. Brank (eds.),
Multi-physics and multi-scale computer models in non-linear analysis and optimal design of
engineering structures under extreme conditions, NATO Science Series. IOS Press, Amster-
dam, 2005. http://arw-bled2004.scix. net/Files/acceptedpapers/Accepted/Markovic.pdf

[8] Damijan Markovǐc and Rainer Niekamp and Adnan Ibrahimbegović and Her-mann G.
Matthies: Multi-scale modeling of heterogeneous structures with inelastic constitutive be-
havior: Part I Physical and Mathematical aspects, Engrng. Computations 22 (2005) 664
683.

[9] Hermann G. Matthies and Rainer Niekamp and Jan Steindorf: Algorithms for strong
coupling procedures, accepted for publication, Comp. Meth. Appl. Mech. Engrng. (2006)

[10] Tarin Srisupattarawanit and Rainer Niekamp and Hermann G. Matthies: Simulation of
nonlinear random finite depth waves coupled with an elastic structure, accepted for publica-
tion, Comp. Meth. Appl. Mech. Engrng. (2006)

[11] T. Korsmeyer and K. Nabors and J. White: FastLap version 2: User s Guide and Refer-
ence Manual, MIT, U.S.A. (1996)

[12] J.I. Gobat and D.C. Atkinson: the FElt System: User s Guide and Reference Manual,

59

University of California, San Diego, U.S.A. (1997)
[13] J.P. Wolf and C. Song: Finite Element Modelling of Unbounded Media, John Wiley and
Sons, Chichester (1996) 1

60

