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aero-elasticity of
flexible sails (FSI)

Application 1: Aero-Hydro Dynamics and FSI



FSI for Sails: Steady state analysis

Fluid solver
(Needs mesh -
Velocity is null)

Structural Solver
(Needs forces)

Linux → Windows XP

Windows XP  →  Linux

Mesher



Fluid-Structure Coupling Scheme



Equations for sails and sail-fluid coupling

Elastodynamics equations (small strains, large displacements)
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Coupling conditions (normal stresses and particle velocities must agree)
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The fluid domain is split in
two subdomains, an inner
cylinder containing the two
sails and a far field region

A boundary layer mesh
is created by refining the
hexahedral grid within
cylinder and sea

Domain description



Pyramids
to connect
the two
meshes

Tetrahedra
inside the
inner cylinder

Hexahedra inside the far field Quad → Tri on cylinder surface

Meshes



Example of Spinnaker-Mainsail FSI

• 14 FSI iterations

• Mesh (average values):
~1.360.000 Tetrahedra 

    (around sails)

~125.500 Hexahedra
   (far field)

     ~3500 Pyramids 
   (link Tetra/Hexa)

• Stopping test:
ΔForces < 1% for two consecutive couplings on both sails



FE Grid



Flow around spinnaker and mainsail
• Boat speed: 5.540 m/s  (~ 15.45 kts) • True Wind Angle: 148 Deg
• True Wind Speed at 10m: 5.660 m/s (~ 17.54 kts)

streamlines velocity and flow separation



Convergence history (forces)



• Coupling between a CFD solver and a rigid body
dynamical system for the hull

• Evaluation of forces and

     sink and trim attitude

• Numerical tool to

complement towing

tank results on hull

performances

FSI for hull design



• 2 degrees of freedom:
• vertical translation (sink)

• pitching rotation (trim)

• Displacement and
external sail moment
imposed

• Crew and gear moment
imposed

• First order fixed point
iteration scheme

Rigid body dynamical system

Fa

D

Wb

Wcrew

L

Fa: Sail Thrust
L: Hydrodynamic Lift
D: Hydrodynamic Drag 
Wb: Boat weight
Wcrew: Crew weight



Results - Wave patterns

 9kts

10kts



Hull dynamics

Boat Speed = 10 kts



Application 2: Blood Flow in Large Vessels

INTIMA

MEDIA

ADVENTITIA



FluidInterface StructureFluid

Schematic representation



ALE Formulation

• Mapping for the solid domain:
 8t, Ω0

s ! Ωs(t)
         x0 ! xs(x0, t) = x0 + ds(x0,t), x0 2 Ωs

0

• Mapping for the fluid domain:
 8t, Ω0

f ! Ωf(t)
         x0 ! xf(x0, t) = x0 + df(x0,t), x0 2 Ωf

0



ALE Formulation

df can be defined as an extension of the solid ds
|Γ0

df = Ext(ds 
|Γ0

), with Ext defined as, e.g.,
Δ df = 0 in Ωf

0
   df = 0 on ∂ Ωf

0
 \ Γ

0
      df = ds               on Γ

0



ALE Formulation

• Domain velocity
w = d xf

t/dt

• ALE time derivative
{∂ u/∂ t}|x0

(x,t) = du(xt
f(x0),t)/dt  with  x0 = (xf

t)-1(x)



Problem Setting

• Fluid(u, p, xf
t, gf, ff)

ρf(∂ u/∂ t |x0
 + (u – w) · r u)  = r · (σf(u,p)) + ff in Ωf(t)

       r.u  = 0 in Ωf(t)
            σf(u,p)· nf = gf on Γin(t) U  Γout(t)

• Solid(ds, gs, fs)
ρs ∂2 ds/∂ t2 - r|x0

 · (σs(ds)) = fs in Ωs
0

       σs(ds) · ns = gs on ∂ Ωs
0 \ Γ0

• Matching conditions
Let λ(t) = λ be an interface variable corresponding to ds on Γ0

xf
t = x0 + λ

        u ± xf
t = ∂ λ/∂ t

    (σf(u,p) · nf) ± xf
t = - σs(ds) · ns



                               WARNING:
 For time-discretization, geometric conservation
laws (GCL) can be a concern for stability. This is
a general issue for evolution equations in
changing domains.
 (see D.Boffi’s talk)

Donea,
Hughes,
Farhat,
Nobile and Formaggia,
Boffi and Gastaldi,
…



Strongly vs weakly coupled methods

•Strongly coupled no numerical instabilities

            high computational costs

•Weakly coupled efficiency and simplicity of
implementation

unstable when there is an 
important “added-mass” effect
(            ) as in blood flows

The fluid acts as an “added-mass” on  the structure
(H.Morand and R.Ohayon, 1995)

•Density of structure ~ density of fluid makes implicit scheme ideal
 as they guarantee energy conservation (strong coupling: matching
 conditions satisfied exactly at each time-step)
•Numerical instability observed (and even proven theoretically) for
weakly (or loosely) coupled schemes



Example: a simple linear fluid-structure problem

Vessel 6 cm long and 1cm wide

Fluid model (linear incompressible inviscid model:

Structure model (linear elasticity, small thickness cylinder, 
assumption of membrane deformation:      generalized string model)

Physical parameters:
Young modulus
Shear modulus

Poisson

potential pressure field)



Coupling conditions:

Continuity of velocity

Continuity of stress

( blood density)

Physical parameters:
Young modulus
Shear modulus

Poisson



Explicit time-marching schemes:
The scheme is unconditionally unstable  if

Analysis

with               maximal eigenvalue of the “added-mass” operator  
(the more        becomes a slender geometry, i.e. for fixed R, the length L 
increases, or for fixed L, the radius R decreases, the larger              becomes)
        is the Neumann-to-Dirichlet map.

Implicit time-marching schemes (Implicit Euler):
A Dirichlet-Neumann scheme = fluid solve + structure solve
converges iff the relaxation parameter        satisfies

(Causin, Gerbeau, Nobile (2004))



FSI algorithms, I
• Monolithic (direct) method: solve simultaneously the

fluid and the structure problems in a unique solver

Strongly coupled by construction

• Partitioned procedure: the fluid and the structure are
solved with two different codes (at any rate, separately)

strongly coupled:
sub-iterations at each time
step until convergence

most often weakly  coupled:
a single fluid-structure
solve at each time step , or
a few (inexact solution)

See Hermann Matthies’ lecture on strongly coupled approaches



FSI algorithms, II

1. Fixed point, Gauss-Seidel or Schwarz multiplicative

2. Newton based methods: requires the evaluation of the
Jacobian associated to fluid-solid coupled state
equations

        2a.  Exact Newton

        2b.  Block, Quasi, or Inexact-Jacobian Newton

4.   Schur-based domain decomposition

3.   Fractional step schemes: differential and algebraic 

Several analogies exist among these strategies



FSI algorithms, III: fixed point and Newton

• Fixed point are common practice, with several variants:
steepest descent, Aitken acceleration, transpiration
conditions, to avoid computation of the fluid matrix at
each iteration.

    Methods slow (in general) or even non-convergent (unless
properly relaxed and/or accelerated), depending upon the
physical characteristics of the two media.

• Remedy: use Newton method, however it requires the
Jacobian evaluation (for FS system). In particular, the
cross-jacobian expresses the sensitivity of the fluid state
to solid motion.

• Cross Jacobian can be evaluated inexactly: FD
approximation of derivatives, or by replacing the tangent
operator by a simpler one. To recover convergence,
acceleration techniques based on Krylov methods have
been proposed.



FSI algorithms, IV: Fractional steps,
differential and algebraic
(weakly coupled, variable degree)

 They couple implicitly the pressure stress to the structure

implicit coupling of the added mass term

good stability properties

The remaining terms of the fluid equations are explicitly
coupled

1. Projection semi-implicit scheme

2. Algebraic fractional step scheme



Projection and Fractional step: common steps

• Step 0: extrapolation of FS interface

•  Step 1: definition of the new domain (and ALE velocity)

ALE framework :                is the fluid domain velocity at
        time



Projection based semi-implicit coupling (case: low Re)

   It splits the differential operator (Chorin-Temam
projection scheme) and then discretizes in time and space

•Step 2: diffusion  step (explicit coupling):

•Step 3: projection step (implicit coupling):

- Step 3.1:



Projection based semi-implicit coupling (II)

- Step 3.2 (mid-point rule discretization for the structure):

Step 1 and 2 are performed only once per time step

      Step 3 is solved by sub-iterating (in a fixed domain) between
3.1 and 3.2, e.g. using fixed-point or Newton iterations.



Variational Formulation

Harmonic Extension:

find df,tn+1 2 H1(Ω1
0) such that

sΩf
0
 r df,tn+1 · r φ = 0

df,tn+1 = λ(tn+1) on Γ0

for all φ 2 H1
0(Ω1

0)3 with appropriate boundary conditions on Γin U Γout

We can then compute the velocity of the fluid domain:

wf,n+1
|Γ(tn+1) = 1/δ t (df

tn+1|Γ0
 - df

tn|Γ0
)±(xf

tn+1)-1

Schur-based domain decomposition



Variational Formulation

Fluid:   Find (un+1,pn+1) 2 Vf(tn+1) £ Qf(tn+1) such that  (Dirichlet data)

un+1
|Γ(tn+1 = wf,n+1 

|Γ(tn+1)
un+1

Γin(tn+1)= uin(tn+1)

1/δt sΩf(tn+1) ρf u n+1 vf + sΩf(tn+1) ρf [(un+1 – wf,n+1)· r un+1] vf + µ sΩf(tn+1)
σf(un+1, pn+1)·rvf = 1/δt sΩf(tn+1) ρf un vf

+ sΓin(tn+1) U Γout(tn+1) gf vf

sΩf(tn+1) qf r · un+1 = 0

8(vf, qf) 2 V0
f(tn+1) £ Qf(tn+1) with

Vf(t) = {vf | vf ± xf
t 2 H1(Ωf

0)3}
Vf

0(t) = {vf 2 Vf(t) | vf ± xf
t = 0 on Γ0 U Γin }

Qf(t) = {qf| qf ± xf
t 2 L2(Ωf

0)}



Variational Formulation

Structure (Neumann data):

2/δt2 sΩs
0
 ρs ds,n+1 vs – 2/δt2 sΩs

0
 ρs (ds,n + δ t ws,n) vs

+ sΩs
0
 σs(ds,n+1 ) · r vs = s∂ Ωs

0 \ Γ0
 gs · vs

+ sΓ0
 σf(un+1, pn+1)· xf

tn+1

8 vs 2 Vs such that vs
|Γ0

 = 0, and Vs = H1(Ωs
0 )3 

ws,n+1 = 2/δt(ds,n+1 – ds,n) – ws,n

ds,n+1 = λ(tn+1) on Γ0



Interface Operators

Fluid operator Sf: (Dirichlet-to-Neumann)

Sf(λ) = σf := (σf(u,p) · nf) ± xt
f on Γ0

where (u,p) is the solution of the Navier-Stokes problem

Structure operator Ss: (Dirichlet-to-Neumann)

Ss(λ) = σs := (σs(ds)· ns) on Γ0

where ds is the solution of the structure problem

We can also define the associated inverse and derived operators
Sf

-1, Ss
-1, S’f

-1, S’
s
-1, …



Interface Problem

Fixed Point Formulation:
Ss

-1(-Sf(λ)) = λ

relaxed fixed point iterations:

Λk = Ss
-1(-Sf(λk))

λk+1 = λk + αk(Λk - λk)

Rootfinding Formulation:
Φ(λ) := Ss

-1(-Sf(λ)) - λ = 0

Newton algorithm :

Λk = Ss
-1(-Sf(λk))

JΦ(λk)µk = -(Λk - λk)
λk+1 = λk + αkµk

With:
 αk is a relaxation parameter (constant, Aitken’s method, …)
JΦ is the Jacobian of Ss

-1(-Sf(λ))

JΦ(λk) = - [Ss’(Λk)]-1.Sf’(λk)



Interface Problem

Steklov-Poincaré Formulation:

Ss(λ) + Sf(λ) = 0

Non-Linear Richardson:

σk    = - (Ss(λk) + Sf(λk))
µk    = P-1σk

λk+1 = λk + αkµk

How do we define the preconditioner P-1 ?



Interface Problem

Domain Decomposition preconditioners:

P-1 = αf Sf
-1 + αs Ss

-1

               αf + αs = 1

Problem: the operators Sf and Ss are non-linear

Idea: replace Sf and Ss by Sf’ and Ss’



Interface Problem: Preconditioning the Richardson Algorithm

Generalized Aitken:
Let αf/s

k = αkαf/s
k and

       µk
f/s = -(Sf’(λk) + Ss’(λk))(αf

k Sf’(λk)-1 + αs
k Ss’(λk)-1) σk

We want to minimize (w.r.t αf  and  αs)

||(λk - λk-1 + αf(µf
k - µf

k-1) + αs(µs
k - µs

k-1) ||

Which corresponds to solving the linear system

AT A(α fk,α sk)T = -AT(λk - λk-1)

where A is the two column matrix

A = ((µf
k - µf

k-1);(µs
k - µs

k-1))



Reconsidering the previous Example:

A vessel 6 cm long and 1cm wide

Fluid model (linear incompressible inviscid model

Structure model (string model)

Physical parameters:
Young modulus
Shear modulus

Poisson

potential pressure field)



DD with Flexible Neumann-Neumann preconditioner

For fixed

For fixed

On the same problem (both string and fluid acting as preconditioners)

(        average of        ;          average of          )



The 3D case

3D Geometry:
Straight cilinder of radius R=0.25cm and length L=5cm
Structure with thickness of 0.05cm
Physical characteristics:
Fluid: viscosity     =0.03 poise, density     =1 g/cm
Solid: density     =1.2 g/cm  , Young modulus E = 3.e6 dynes/cm,
           Poisson ratio    = 0.3
Space discretization
Fluid: Navier-Stokes equations,       -bubble/
Solid: Linear Saint Venant-Kirckhoff,       , no time derivative
Time discretization
Time interval [0,0.02s] and        = 1.e-3, 5.e-4, 1e-4.
At t=0 the system is at rest. The structure is clamped at inlet and 
outlet. Pressure of 1.3e4 dynes/cm   imposed at the inlet for 3.e-3s


