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Application 1: Aero-Hydro Dynamics and E

Aerodynanges

aero-elasticity of
flexible sails (FSI)
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FSI for Sails: Steady state analysis
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Fluid-Structure Coupling Scheme

Eun Mesh Generator.
Input: G ¢

IEY2

Eun Mesh Generator.

Eun Mesh Motion. Input: Input: G0
D=1 (hanged to M¥1), 8. l MO

-1
l Compute Py_muved™ Eun Fluid Zolver. Input:

MO, V,=0

Rl!ln Fluid Solver. Input:

P: ynoved™! (interpolation), ME, V,;=0
l Campute Pk

Compute PO

Eun Structural Solver. Input:

Pk - PFl< Toll OR k = Kppax ? Gk Pk

Compute G, §k1
k=k+1

Legend (pedex “s” refers to sail surface):

G¥ = Sail geometries at k-th iteration

Pk = Pressure on sails at k-th iteration

W = Iesh at k-th iteration

S8 = Sail displacements at k-th iteration

Ps_m.{l‘ = Pressure on sails after mesh motion at k-th iteration
Vs = Bail velocity (always zero in steady mode)

Toll { Kqpax = Tolerance on pressures/tdaz # of iterations




Equations for sails and sail-fluid coupling

Elastodynamics equations (small strains, large displacements)

Y (x,t) : deformation map

iy .
p,— 5 -div Vy2)=f on S(0),t>0

S=ATrEI+2uE :

E=%(VWW—I) |

Coupling conditions (normal stresses and particle velocities must agree)

(Vi 21 (0)=T(u, p)oy Cof (Vy)n (0)
on on F(O)

—— =10
ot v

n(x,t) =1y (x,t)-x : displacement vector field

\.

.




Domain description

The fluid domain is split in
two subdomains, an inner
cylinder containing the two
sails and a far field region

A boundary layer mesh
is created by refining the
hexahedral grid within
cylinder and sea




Meshes

Hexahedra inside the far field

Quad — Tri on cylinder sutface

Pyramids
to connect
the two
meshes

Tetrahedra
inside the
inner cylinder




Example of Spinnake

® 14 FSI iterations
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* Stopping test:

AForces < 1% for two consecutive couplings on both sai
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Flow around spinnaker and mainsail

® Boat speed: 5.540 m/s (~ 15.45 kts) e True Wind Angle: 148 Deg
® True Wind Speed at 10m: 5.660 m/s (~ 17.54 kts)

N NN
00+5000 70

[r—’{e~;n}

streamlines velocity and flow separation
.
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FSI for hull design

Coupling between a CFD solver and a rigid body
dynamical system for the hull

Evaluation of forces and

sink and trim attitude

Numerical tool to
complement towing

tank results on hull

performances




Rigid body dynamical system

* 2 degrees of freedom:
* vertical translation (sink)
* pitching rotation (trim)

* Displacement and

external sail moment
imposed

* Crew and gear moment
imposed

e First order fixed point
iteration scheme

F

a

be

crew’

Sail Thrust
Hydrodynamic Lift
Hydrodynamic Drag
Boat weight

Crew weight




Results - Wave patterns




Hull dynamics

Boat Speed = 10 kts




Application 2: Blood Fl
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Schematic representation




ALE Formulation

Sl“
5

e

]_"inu) I“Ul_lt[‘ }

| Of(t

2 Q(t)

* Mapping for the solid domain:
Vt, Q5 — Q5(t)
Xq — X5(Xq, t) = X5 + d3(x, 1), X5 € 5

* Mapping for the fluid domain:
Vt, Q,f — Qf(t)
Xq = Xi(x,, t) = %, + df(x,,t), X, € Q)




ALE Formulation

S!“

p
I'o |

]_"inu) I“Ul_lt[‘ }
Of(t

( Q(t)

df can be defined as an extension of the solid d*, I

df = Ext(ds IFO), with Ext defined as, e.g.,
Adf=0 in Qfo
df=0 onanO\FO
df = ds onT




ALE Formulation

Sl“
5

e

]_"inu) I“Ul_lt[‘ }

; Of(t

5 s

( Q(t)

* Domain velocity

w=d xf,/dt

e ALE time derivative
{ou/o t}lXO(x,t) = du(xf(x,),t)/dt with x,= (x/{)"(x)




Problem Setting

e Fluid(u, p, X!, g, f;)

pedu/at [+ (u-w)-Vu) =V-(o(up)) *f in Q(t)

Vau =0
o(u,p)- n; = g;

e Solid(ds, g, £.)

* Matching conditions

xf, = x, + A
uoxf, =9dAN/0t

(0(u,p) - ng) © Xy = - 0(d°) - g

in Qf(t)
on I'n(t) U Iout(t)




WARNING:
For time-discretization, geometric conservatio
laws (GCL) can be a concern for stability. This is
a general issue for evolution equations in

changing domains.
(see D.Boffi’s talk)

Donea,

Hughes,

Farhat,

Nobile and Formaggia,
Boffi and Gastaldi,




Strongly vs weakly coupled methods

eDensity of structure ~ density of fluid makes implicit scheme ideéal
as they guarantee energy conservation (strong coupling: matching
conditions satisfied exactly at each time-step)

eNumerical instability observed (and even proven theoretically) for
weakly (or loosely) coupled schemes

*Strongly coupled = — no numerical instabilities

*Weakly coupled = — efficiency and simplicity of
implementation

The fluid acts as an ”added-mass” on the structure
(H.Morand and R.Ohayon, 1995)




Example: a simple linear fluid-structure proB

Fluid model (linear incompressible inviscid model:
— potential pressure field)

fﬁp:O ian

p=pin(t) on rinflov
. p=0 on e

(linear elasticity, small thickness cylinder,

assumption of membrane deformation: —

02d 02d Ehs d
pshs — kGhs + 1 _ 22 R% — E>s

Ot2 Ox2
Physical parameters: ps = 1.1,hs = 0.1, Poisson v = 0.5
Young modulus E = 7.5 10° dynes/cm2
Shear modulus kG = 2.5-10° dynes/cm2

Vessel 6 cm long and 1cm wide




Coupling conditions:

Continuity of velocity

Op

on  To2

(psf = 1g/cm? blood density)

Continuity of stress

P— —O0s

Physical parameters: ps = 1.1,hs = 0.1, Poisson v = 0.5
Young modulus E = 7.5 - 10° dynes/cm?
Shear modulus kG = 2.5-10° dynes/cm2

.




Explicit time-marching schemes:
pshs

PfUmax

The scheme is unconditionally unstable if <1

with pmaee maximal eigenvalue of the “added-mass” operator M 4

(the more 2> becomes a slender geometry, i.e. for fixed R, the length L
increases, or for fixed L, the radius R decreases, the larger tmaz becomes)
M j is the Neumann-to-Dirichlet map.

Implicit time-marching schemes (Implicit Euler):

A Dirichlet-Neumann scheme = fluid solve + structure solve

converges iff the relaxation parameter w satisfies

2 (PShS —|— CL5t2)

O<w<
pshs + pritmaz + adt?

(Causin, Gerbeau, Nobile (2004))




ESI algorithms, I

* Monolithic (direct) method: solve simultaneously thé
fluid and the structure problems in a unique solver

l

by construction

* Partitioned procedure: the fluid and the structure are
solved with two different codes (at any rate, separately)

/ \

sub-iterations at each time g single fluid-structure

step until convergence solve at each time step , or
a few (inexact solution)

See Hermann Matthies’ lecture on strongly coupled approaches




FSI algorithms, 11

. Fixed point, Gauss-Seidel or Schwarz multiplicative

. Newton based methods: requires the evaluation of the

Jacobian associated to fluid-solid coupled state
equations

2a. Exact Newton

2b. Block, Quasi, or Inexact-Jacobian Newton

3. Fractional step schemes: differential and algebraic

4. Schur-based domain decomposition




FSI algorithms, III: fixed point and New Xt

Fixed point are common practice, with several variants:
steepest descent, Aitken acceleration, transpiration
conditions, to avoid computation of the fluid matrix at
each iteration.

Methods slow (in general) or even non-convergent (unless
properly relaxed and/or accelerated), depending upon the
physical characteristics of the two media.

Remedy: use Newton method, however it requires the
Jacobian evaluation (for FS system). In particular, the
cross-jacobian expresses the sensitivity of the fluid state
to solid motion.

Cross Jacobian can be evaluated inexactly: FD
approximation of derivatives, or by replacing the tangent
operator by a simpler one. To recover convergence,
acceleration techniques based on Krylov methods have
been proposed.

.




FSI algorithms, IV: Fractional steps,

differential and algebraic
(weakly coupled, variable degree)

1. Projection semi-implicit scheme

2. Algebraic fractional step scheme

They couple implicitly the pressure stress to the structure

— implicit coupling of the added mass term

—

The remaining terms of the fluid equations are explicitly
coupled

.




Projection and Fractional step: common stepg

* Step 0: extrapolation of FS interface
—n+1 _ 5. 1-n—1
it =gt 4 t(5n" — 5" )

* Step 1: definition of the new domain (and ALE velocity)

—n+1 . n
witl |p= T | gnt1 — ext(wntl )

Q?JZ:“ = Q1 + Stwnt1

ALE framework : w11 is the fluid domain velocity at
time ¢ 1




Projection based semi-implicit coupling (case: lowa Re)

It splits the differential operator (Chorin-Temam
projection scheme) and then discretizes in time and space

*Step 2: diffusion step (explicit coupling):
ﬁn—l—l i un—l—l

R ~n+1l _ n+1
oy = = — pAT"TT =0 in 4

ﬁn—l—lzwn—l—l on |—n—|—1

*Step 3: projection step (implicit coupling):

I = 1

Pf 5t f

div u"tl =0 in Q?}“
il
A & - Un.nf on i




Projection based semi-implicit coupling (1I)

- Step 3.2 (mid-point rule discretization for the structure):

ozt +Gg) =0 in &
— S

n+1 X0
_"n 2-|-77 i

a?}fl(ﬁ”""l,p”""l)-nf on [

x

Step 1 and 2 are performed only once per time step

Step 3 is solved by sub-iterating (in a fixed domain) between
3.1 and 3.2, e.g. using fixed-point or Newton iterations.




Schur-based domain decomposition

Variational Formulation

Harmonic Extension:

find df"" € HY(Q',) such that

Jot, V di" . v ¢ =0
dEet = ) (tn1) onT,

for all ¢ € H!(R!,)*> with appropriate boundary conditions on I''» {J I'°ut

We can then compute the velocity of the fluid domain:

Wf’n+1 |F(tn+1) = 1/6 t (dftn+1 |F0 - d.f,[m|FO)O(Xf,[m+1)"1




Variational Formulation

Fluid: Find (u™1,p™1) € Vi{tn*1) x Qf(t™*1) such that (Dirichlet data

fn+1

+1 - ,
u |F(tn+1 = whi |F(tn+1)

U™ pingn+1y= U, (E0)

1/8t [ofn+ty peu ™ v+ [of ety pe [(W™T = W), V u™] vE+ o [ornsy
Gf(u“”, p“”) vvi=1/ 6t fgf 1y P U VA

+ fr1n(tn+1) U rout(n+1y 2 i

fo(tn+1) qf V- un+1 =0

V(v qf) € V i(t2*1) x Qf(t"*1) with

Vi(t) = {vf | vt o xf, € H(Q1,)?}

Vi (t) = {vf e Vi(t) | vioxf,=0onT,UT™"}
Q'(t) ={q'| q' o X'y & LX)}

.




Variational Formulation

Structure (Neumann data):

2/ [y A1 v = 2/8 [ p, (don + & twsm) ve

+ fQSO ()S(dS,n-i_1 ) ) v VS o fa QSO\ FO gS i VS

f
*+ Jr, ofum, pr)- X+l

vV v® € V®such that v*, . =0, and V° = H(Q%)°
Ws,n+1 — 2/ 6t(ds,n+1 . ds,n) — WS

dsmtl = A(t™*1) on T,




Interface Operators

Fluid operator S;: (Dirichlet-to-Neumann)

S¢(M) = o := (0((u,p) - ng) o x on I

where (u,p) is the solution of the Navier-Stokes problem

Structure operator S.: (Dirichlet-to-Neumann)

Ss(}\‘) = O = (Gs(ds)' ns) on rO

S

where d® is the solution of the structure problem

We can also define the associated inverse and derived operators
= - J J
Sf 1, SS 1, S f—1, S 8—1, e oo




Interface Problem

Fixed Point Formulation: Rootfinding Formulation:
SH(-5:M) = A D) :=5.1(-5¢A) -2 =0

relaxed fixed point iterations: Newton algorithm :

A = S 1(-S(AX) A<= 5.1(-5¢(M)

AL = Dk + gk (Ak - AK) Jp (M = -(A¥ - A9)
A = Dk 4+ ok

With:
ok is a relaxation parameter (constant, Aitken’s method, ...)
J is the Jacobian of S_1(-S;(A\))

Jo(M) = - [S/(A9] .S/ (M)




Interface Problem

Steklov-Poincaré Formulation:

S(M) +5¢(A) =0

Non-Linear Richardson:

ot =-(S,(\) + 5(A9)
uk = Plgk
AR = Ak 4 gkyek

How do we define the preconditioner P! ?




Interface Problem

Domain Decomposition preconditioners:

o= 1 Sl

ot o, =1

Problem: the operators S; and S, are non-linear

Idea: replace S; and S, by S;" and S,




Interface Problem: Preconditioning the Richardson A

Generalized Aitken:
Let o/~ = a*oy < and
W5 = =(Sf (M) + 8 (W)
We want to minimize (w.r.t o, and o)
| TR =R+ o - <) + o (ug - u) | |
Which corresponds to solving the linear system
AT Ao X0 KT = -AT(AK - Ak

where A is the two column matrix

Fi (U - u )




Reconsidering the previous Example:

A vessel 6 cm long and 1cm wide

Fluid model (linear incompressible inviscid model
— potential pressure field)

( Ap =0 I Qf
p=pin(t) on rinflov
L p=0 on e

(string model)

02d 0°d  Ehs d  _,
pshsatQ ; kGhSaﬂ T 1 —v2R3 ihi

Physical parameters: ps = 1.1,hs = 0.1, Poisson v = 0.5

Young modulus E = 7.5 - 10° dynes/cm?
Shear modulus kG = 2.5 - 10° dynes/cm?




( wf average of we';

For fixed h = 0.15

k.

Wws average of wg

)

On the same problem (both string and fluid acting as preconditiers)

ot

i

Wws

iterations

1.e-4
1l.e-5
1.e-6

3
2
2.

.e-3
e-3
8e-3

3.e-2
3.8e-2
3.9e-2

33
30
2T

For fixed 0t = 1l.e — 4

wf

iterations

6
3
3.

e-3
e-3
3e-3

33
33
37




3D Geometry:

Straight cilinder of radius R=0.25cm and length L=5cm

Structure with thickness of 0.05cm

Physical characteristics:

Fluid: viscosity (4t=0.03 poise, density Pf=1 g/c:m3

Solid: density ps=1.2 g/cm3, Young modulus E = 3.e6 dynes/c:m,3
Poisson ratio/= 0.3

Space discretization

Fluid: Navier-Stokes equations, IP1 -bubble/ [P1

Solid: Linear Saint Venant-Kirckhoff, IP1 , no time derivative
Time discretization

Time interval [0,0.02s] and At = 1.e-3, 5.e-4, 1e-4.
At t=0 the system is at rest. The structure is clamped at inlet and
outlet. Pressure of 1.3e4 dynes/cm? imposed at the inlet for 3.e-3s




