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3 FLUID-STRUCTURE INTERACTION STANFORD

- short duration
- limited fluid displacements

Time: 1.00076e+005

- shock, impact

» Class I

- long duration
- limited fluid displacements
- elastoacoustics

» Class |l

- large relative motion

- process dominated by the flow
- aeroelasticity
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% FLUID-STRUCTURE INTERACTION ‘STANFOR
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* Navier-Stokes (laminar/turbulent)
* Euler
* Linearized Euler
* Linearized Euler + small movements

* Nonlinear
* Linear

—> C(lass |, Class Il and Class lll applications
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@ FLUID-STRUCTURE INTERACTION |5

* Linearized Euler + small movements

* Linear vibrations (elastodynamics)

—> mainly Class Il applications




TANFORD

* Navier-Stokes (laminar/turbulent)
* Euler

* Nonlinear
*Linear

— > mainly Class lll applications
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% CONTINUOUS INTERFACE MOTION ﬁTANFOR
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» Regridding techniques
» Transpiration methods

>

» Level set methods
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ALE Fluid Flow Formulation

Dynamic Fluid Mesh

~—d?*x T dx -
\V/ [p— — +tKx =0
Jc2 —I—Ddt + X




FLUID-MESH MOTION
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Structural Dynamics

d? :
W ) 0= PR 5.1

Heat Transfer

de°
Qg THE = g™(W)
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Fluid / Structure Interface

c°n = —(p—pref)n + f

9°5 = PF
kOVO° n=—rI'vol n

Dynamic Fluid Mesh / Structure Interface
= U

r o= u
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>

» Exchange of aerodynamic and elastodynamic data

>

— > main results

— > references for further details (see last slide)
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- during the first part of this talk, assume that x and

therefore C;_fare given (for example, forced

oscillations)







FL
UX
TIM
E
A
VERA
G
ING
\ﬁTAN
FO
R
)




MECHANICAL

ENGINEERTING

% FIRST GUIDELINE ‘ STANFORL

ldea: conservation of a uniform flow

a(ajfv>\a+J%.f"( )= = JVR(W)

Re

> Discretize in space, set W= W", then choose a
time-discretization scheme that computes
exactly the resulting relationship
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% THE SEMI-DISCRETE GCL  |[STANFORE

V@( Xn—i—l) o

tn—i—l
AVAL (9 - Vb 40 = / Vhﬁ x; dS)dt
Q( tn+1) Q(tn) n Q1)

involve only geometric quantities

universal (for a given semi-discretization method)
geometric conservation laws (GCLs)

are independent of any time-integration scheme
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p-th order Discrete

Geometric Conservation Law

(DGCL)

characterizes the time-integrator of interest

(there is NO universal DGCL)
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— > can be used to determine X, X | and

— > does not determineXx and

> unknown order of time-accuracy of resulting scheme
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% APPLICATION TO SCHEME DESIGN ‘ﬁTANFOR
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— > can be used to determine X, X | and

— > does not determineXx and

== unknown order of time-accuracy of resulting scheme
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ldea: preserving the order of time-accuracy
on fixed grids of the original scheme

:Hn—i—l Xn—|—1_|_9nxn_|_<1_9n —(9n+1)Xn_1

Taylor expansion to evaluate truncation error




MECHANICAL

ENGINEERING

% A SIMPLE 2"-ORDER SCHEME ‘ STANFORD

— > two flux evaluations per time-step
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% ANOTHER 2"-ORDER SCHEME ‘STANFOR

— > five flux evaluations per time-step
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Error (L* norm)

1072
b
103 + ¥ s
10 |
Oy~ DEEL ——
O(A?) - No-DGCL ——
10® GIATY = DBEL ~-
O(At) -- No-DGCL ~——&—
10® Y o
0.001 0.01 0.1

At (8)



TO DGCL OR NOT TO DGCL \ﬁTANFOR
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- two flux computations per time-step

- 2"d_order time-accurate
- violates its corresponding (2"9-order) DGCL

- five flux computations per time-step
- 2"-order time-accurate
- satisfies its corresponding (2"4-order) DGCL
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% CONFIGURATION AVERAGING ‘ STANFORD

- two flux evaluations per time-step
— > - 2"9-order time-accurate
- satisfies its DGCL
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» The terminology “geometric conservation law"

was coined in 1979 by Thomas and Lombard

(finite differencing, mass conservation)

» The computational method proposed in 1959
by Godunov incorporated a similar requirement




% UNTIL RECENTLY (STANFORD
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» Recurrent conflicting assertions in the literature
about the practical usefulness of the "[D]GCL"

» Theoretical status of this "requirement” is unclear
(after all, why should one pay special attention
to a uniform flow field?)

» Why the constant solution of the Navier-Stokes
equations must be computed exactly by a given
numerical scheme, while the other solutions are

only approximated by that scheme?
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- the continuous GCL
Vz'(ZCn+1) _ Vz(xn)

- the first-order DGCL

Vi( x"tY) — Vi(x")
- the p-th order DGCL
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For a given scheme that is p-th order time-accurate
on a fixed mesh, satisfying the corresponding

p-th order DGCL is a sufficient condition for this
scheme to be at least Ist-order time-accurate on

a moving mesh



TANFOR
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Given a humerical scheme with established
nonlinear stability properties (i.e. unconditionally
stable) on a fixed mesh, satisfying the corresponding

pth-order DGCL is a necessary and sufficient condition
for preserving these numerical nonlinear stability
properties (discrete maximum principle) on a moving
mesh
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Consider an extension to moving grids of the classical
g-scheme. If this extension violates its DGCL, then the
following stability estimates hold:

Explicit case ||[W"||. < [[W"]|. o CALT

CAt T

Implicit case W, < HWOHOO el—CAt2

where the constant C depends on the velocity of the grid
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2nd-order, No-DGCL

At =0.00025

A At=0.000125

nd-order, 2-DGCL

At=0.002
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2"d-order, 2-DGCL
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- transient (time-dependent, unsteady, ...)

and NOT algebraic (steady) problems




% COUPLED SOLUTION ALGORITHMS ‘ﬁTANFOR
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Structure subsystem

\ J \ J

o re-formulation of structure problem as a 15t-order ODE
o conversion of a system of ODEs into a macro DAE
o 2/3r%-monolithic formulation

o limited opportunities for code re-use
o algebra-type parallelism
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% PARTITIONED SCHEMES (STaNFORE

- off-the-shelf schemes
- different numerics for different physics
- subcycling

- inter-parallelism

- software modularity

(+ inner-iterations
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- Inaccurate

- unstable for any realistic time-step

- unconditionally unstable when the mass of the fluid
subsystem is much greater than the mass of the

structure subsystem
- useless (not to say stupid)
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- ADI, LOD, AFM

- implicit one dimension at a time

- desired accuracy and stability can be maintained
for many problems of interest

- acoustic pressure
- desired accuracy and stability can be maintained
by introducing prediction, augmentation, ...

—> ART
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TOFDOMDEC ¥. 2.0
PGSoft and CUT Bovlder

Colorado USA AMPLIFICATION FACTOR =4

Mach = 0.94 AoA =1.55
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PGSoft and cu Buulder

Colarado USA AMPLIFICATION FACTOR =8

Mach = 0.94 AoA =1.55




T — ZEF(O) = U,

1= Uy

t .
o(t) = (1) + | T() i () dn

-K;;gz (1) K;;F(t)
1

T (t) = T.
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Structure




SSTATE—OF—THE—ART LOOSELY COUPLEd ﬁTANFOR )

Structure
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ut P =qyr+ AU+ At (@7 -7
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Op . 04

TWH1

pn+1R

| provable control of accuracy
and numerical stability
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% EFFECT OF FLUID MESH MOTION ‘ﬁTANF()R

The local truncation error of the time-averaged ALE
version of the 3-point BDF scheme implemented in the
generalized loosely coupled staggered procedure satisfies

v, (1) = Até Ol (") — (™)) + O(AL3)

Forced fluid-mesh motion and structure-induced
— > fluid-mesh motion do not have the same effect on
the accuracy of the ALE flow solver
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% EFFECT OF PREDICTED LOADS ‘ STANFORD

The local truncation error of the midpoint rule applied
to the structure subproblem satisfies

wv(tnﬂ) — At ZO(” fsae(xr(trwk))_ fSae(:El;’(tn+k))”)
0

+ O( At3)
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It the generalized loosely coupled scheme is equipped

with a 2"¥-order structure predictor ,
and the matrix T characterizing the fluid-mesh motion

algorithm is evaluated as follows

then this scheme is formally 2"9-order time-accurate

CIZ’n+1P nP ((Tn1 4 T”)/Z) Aun+1P




Structure u"
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Heat Transfer
In Structure
(AERO-H)

CFD / Moving Grids
(AERO-F)

Structure
(AERO-S)

Dynamic Fluid Mesh

Interf. Disp.
f I (AERO-M)

& Veloc.
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Time : 0.002500
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%g ACCURACY ON MOVING GRIDS  |[STANFORD
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“3D Simulation (Clean Wing)
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- loss of numerical stability and accuracy

- "bad” reputation

- model incompressible flow problem

- added-mass form of the governing equations

- most primitive loosely-coupled time-integrator

- asymptotic stability when ps <<pr & At =2 O

- low-speed flows, lightweight (shell) structures
- weak instabilities observed when M¢ << Kg
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% STRONGLY-COUPLED VERSION ‘STANF()R

Structure

— > relatively expensive proposition, unless necessary
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>

- at convergence, inner-iterations
conserve the energy transferred

at the fluid/structure intertace —~_—

8En+1 - pTF (Sunﬂ . SX”H) =0

- parameterized loosely-coupled partitioned schemes
achieve the above property in an asymptotic sense

OEN+! = PTF (SunHP_ an+1) = 0(At9)
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>

- blood flow in large human arteries

- simplified model problem

- most primitive loosely-coupled solver (no ART)
- explicit structural time-integrator

Pr (V" = vg™) + Vp" =0
At

div ve" = O

(uSn+1 o ZuSn + uSn—1) + a uSn — Prn

At2
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Psh (ug ™ = 2ug” + ug™) + pe (ug;" = 2ug™ + ug™?) + aug" =0

At?

At?
<
%

light slender
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% ENERGY ANALYSIS (STANFORT

B-LC AE=-2 cwAt; c <O AE > O

ut P =y + 1 At u™+ (1/2) At (u” — u™")

pn—i—lR _ 2pn—|—1 _pn

SoA-LC  AE = (17/24) c’ At3 AE <O

— > incompressibility is the source of numerical difficulties
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% |OW-SPEED INTERNAL FLOW  |[STANEORT

» Causin, Gerbeau and Nobile (2004)
- =6.0cm

-r =05 cm

-h =0.1cm
-pp=112 g/cm?3
-v =32 m/s

- initial excitation

by an eigen mode Q

» Output: displacement field at node 1236

» Ps < Pe
» SoA LC with compressible flow solver
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» SoA LC with compressible flow solver
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% CONCLUSIONS ‘ STANFORD

- DGCL and not GCL

- in general, not related to accuracy but is a
sufficient condition for consistency

- related to nonlinear stability : at least for the
nonlinear scalar conservation law, it is a

necessary and sufficient condition for
nonlinear stability
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- nonlinear stability of coupled fluid/structure
algorithm hinges on nonlinear stability of

CFD scheme on moving grids

- time-accuracy of coupled fluid/structure
algorithm hinges on time-accuracy of
CFD scheme on moving grids
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- when smartly designed, they are VERY effective

for transient (unsteady) compressible problems
- smart designh = parameterized design for control

of accuracy and energy transfer at fluid/structure
interface

- not necessarily the most effective algorithms for
steady-state problems

- can suffer for incompressible fluid/structure
interaction problems
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