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- short duration
- limited fluid displacements
- shock, impact

� Class I

� Class II 

- long duration
- limited fluid displacements
- elastoacoustics

� Class III
- large relative motion
- process dominated by the flow
- aeroelasticity

FLUID-STRUCTURE INTERACTION 



FLUID-STRUCTURE INTERACTION 

- Fluid subsystem
* Navier-Stokes (laminar/turbulent)

* Euler
* Linearized Euler

* Linearized Euler + small movements

- Structure subsystem
* Nonlinear

* Linear

� Time-domain

Class I, Class II and Class III applications



FLUID-STRUCTURE INTERACTION 

- Fluid subsystem
* Linearized Euler + small movements

- Structure subsystem
* Linear vibrations (elastodynamics)

� Frequency-domain

mainly Class II applications



FOCUS APPROACH & APPLICATIONS 

- Fluid subsystem
* Navier-Stokes (laminar/turbulent)

* Euler

Structure subsystem
* Nonlinear

* Linear

� Time-domain

mainly Class III applications



EXAMPLES 



NONLINEAR AEROELASTICITY



CONTINUOUS INTERFACE MOTION

� Level set methods

� Arbitrary Lagrangian-Eulerian methods
(dynamic meshes, moving grids, …)

� Regridding techniques

� Transpiration methods 

� Arbitrary Lagrangian-Eulerian methods
(dynamic meshes, moving grids, …)



ALE Fluid Flow Formulation
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FLUID-MESH MOTION



Structural Dynamics
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Fluid / Structure Interface 
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COMPUTATIONAL RESEARCH

� Coupled solution algorithms

� CFD on moving grids

� Exchange of aerodynamic and elastodynamic data 

main results

references for further details (see last slide)

� CFD on moving grids

� Coupled solution algorithms



� ALE Navier-Stokes equations 

CFD ON DYNAMIC MESHES

� Mesh motion

- during the first part of this talk, assume that x and

therefore       are given (for example, forced

oscillations)

d x
d t
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� Advancing the FV or FE flow solution
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� p-th order implicit BDF schemes
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Idea: conservation of a uniform flow

� Discretize in space, set W = W* , then choose a
time-discretization scheme that computes
exactly the resulting relationship

FIRST GUIDELINE
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FE:

involve only geometric quantities

universal (for a given semi-discretization method)
geometric conservation laws (GCLs)

are independent of any time-integration scheme

THE SEMI-DISCRETE GCL



� Set W = W* = constant

� Flux time-averaging 
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Geometric Conservation Law

(DGCL)

characterizes the time-integrator of interest
(there is NO universal DGCL)

THE p-th ORDER DGCL
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APPLICATION TO SCHEME DESIGN



� 2nd-order implicit BDF satisfying its 2nd-DGCL 
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Idea: preserving the order of time-accuracy
on fixed grids of the original scheme
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� Application to the 2nd-order implicit BDF 
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Taylor expansion to evaluate truncation error

SECOND GUIDELINE



� The one-point rule
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A SIMPLE 2nd-ORDER SCHEME



� The four/one-point rule (satisfies 2nd-DGCL!) 
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ANOTHER 2nd-ORDER SCHEME



REALIZATION



� The one-point rule (FV) 

- two flux computations per time-step
- 2nd-order time-accurate
- violates its corresponding (2nd-order) DGCL

� The four-point rule (FV) 

- five flux computations per time-step
- 2nd-order time-accurate
- satisfies its corresponding (2nd-order) DGCL

� Which is better? The more economical one? 

TO DGCL OR NOT TO DGCL



- two flux evaluations per time-step
- 2nd-order time-accurate
- satisfies its DGCL

� FV method, 2nd-order implicit BDF

s= 1

X
W

r= 1

®n+ rV i (x
n+ r ) n+ r

i

+¢ t n Fi(W ;
c n+ 1( )

¡ 1

4P

s=1
ws ~ºººº

s
ij ; ws ····

s
ij

c c
4P

s=1

sxxxx )¡Ri(W ; ) = 0
n+1 4P

ws
c

CONFIGURATION AVERAGING



� The terminology ``geometric conservation law’’
was coined in 1979 by Thomas and Lombard

(finite differencing, mass conservation)

� The computational method proposed in 1959
by Godunov incorporated a similar requirement 

A BRIEF HISTORY 



� Recurrent conflicting assertions in the literature 
about the practical usefulness of  the “[D]GCL”

� Theoretical status of this “requirement” is unclear
(after all, why should one pay special attention
to a uniform flow field?)

� Why the constant solution of the Navier-Stokes
equations must be computed exactly by a given
numerical scheme, while the other solutions are
only approximated by that scheme?

UNTIL RECENTLY 
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UNFORTUNATE CONFUSIONS



� Proposition 1 (Farhat & Guillard, 1998)

For a given scheme that is p-th order time-accurate
on a fixed mesh, satisfying the corresponding 
p-th order DGCL is a sufficient condition for this 
scheme to be at least 1st-order time-accurate on 
a moving mesh

A SUFFICIENT CONDITION



� The “[D]GCL” is neither a sufficient nor a necessary
condition for numerical stability …

OTHER SURPRISING STATEMENTS
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RELATIONSHIP TO STABILITY



Given a numerical scheme with established               
nonlinear stability properties (i.e. unconditionally
stable) on a fixed mesh, satisfying the corresponding
pth-order DGCL is a necessary and sufficient condition 
for preserving these numerical nonlinear stabilitynonlinear stabilitynonlinear stabilitynonlinear stability
properties (discrete maximum principle) on a moving 
mesh

(Nonlinear scalar conservation law and the     family of schemes)θ

NECESSARY & SUFFICIENT CONDITION

� Proposition 2 (Farhat & Grandmont, 1999)
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Consider an extension to moving grids of the classical
-scheme. If this extension violates its DGCL, then the 

following stability estimates hold:

Explicit case

Implicit case
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� Proposition 3 (Farhat & Grandmont, 2001)



SIGNIFICANCE
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2nd-order, 2-DGCL
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� Monolithic schemes

Fluid subsystem

Structure subsystem

Dynamic fluid mesh subsystem

W

u

x

COUPLED SOLUTION ALGORITHMS

- transient (time-dependent, unsteady, …)
and NOT algebraic (steady) problems

� Context



• re-formulation of structure problem as a 1st-order ODE 
• conversion of a system of ODEs into a macro DAE
• 2/3rd-monolithic formulation
• limited opportunities for code re-use
• algebra-type parallelism

� Monolithic schemes

Fluid subsystem

Structure subsystem

Dynamic fluid mesh subsystem

W

u

x

COUPLED SOLUTION ALGORITHMS



MONOLITHIC SCHEMES



PARTITIONED SCHEMES

- off-the-shelf schemes
- different numerics for different physics
- subcycling
- inter-parallelism
- software modularity
- …

� Partitioned (staggered) schemes

* Loosely-coupled scheme

(+ inner-iterations

= strongly-coupled scheme)



SOME MISCONCEPTIONS (for Class III)

- inaccurate
- unstable for any realistic time-step
- unconditionally unstable when the mass of the fluid
subsystem is much greater than the mass of the
structure subsystem

- useless (not to say stupid)

� Loosely-coupled schemes are

� Inner-iterations improve accuracy



� Peacemann and Rachford (1955)

- ADI, LOD, AFM
- implicit one dimension at a time
- desired accuracy and stability can be maintained
for many problems of interest

� Park, Felippa & DeRuntz (1977-1983)

- acoustic pressure
- desired accuracy and stability can be maintained
by introducing prediction, augmentation, …

BACKGROUND

ART 



WHAT’S THAT?



CAUSE OR CONSEQUENCE?



FLUID MESH MOTION
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PARTITIONED SCHEMES
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STATE-OF-THE-ART LOOSELY COUPLED
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� Predictors

(Gauss-Seidel)
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� Reconstructors

PREDICTORS & RECONSTRUCTORS



α1α0 ,� Predictor:

pn+1R
� Reconstructor:

� Mesh integrator: T n+1

CONTROL PARAMETERS

provable control of accuracy 
and numerical stability



Lemma 1

The local truncation error of the time-averaged ALE 
version of the 3-point BDF scheme implemented in the
generalized loosely coupled staggered procedure satisfies

ψw(tn+1) = t∆ Σ
-1

1

O(||xP(tn+k) – x(tn+k)||) + O(     )t3∆

Forced fluid-mesh motion and structure-induced 
fluid-mesh motion do not have the same effect on 
the accuracy of the ALE flow solver

EFFECT OF FLUID MESH MOTION



Lemma 2

The local truncation error of the midpoint rule applied
to the structure subproblem satisfies 

+ O(      )
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EFFECT OF PREDICTED LOADS



A 2nd-ORDER SoA-LC SCHEME

If the generalized loosely coupled scheme is equipped
with a 2nd-order structure predictor (     = 1,      = ½),
and the matrix T characterizing the fluid-mesh motion 
algorithm is evaluated as follows

then this scheme is formally 2nd-order time-accurate

T = (T n-1 + T n)/2

α0 α1

xn+1P =  xnP + ((T n-1 + T n)/2) un+1P∆ ¡

� Proposition 4 (Farhat, 2004)
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� Proposition 5 (Farhat, 2004)

ANOTHER 2nd-ORDER SoA-LC SCHEME
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Interf. Disp. 
& Veloc.

Structure

(AERO-S)

CFD / Moving Grids

(AERO-F)

Dynamic Fluid Mesh

(AERO-M)

Heat Transfer
in Structure

(AERO-H)

Mesh   Motion

Interf. Temp.

Temp. Flux

Press.      FluxTemp.

THE AERO PLATFORM



ADVANCED STRUCTURAL MODELING



AEROELASTIC TRANSIENT RESPONSE



ACCELERATED FLIGHT
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ISSUES?

� The ART part is often forgotten/dropped by practitioners

- loss of numerical stability and accuracy
- “bad” reputation

� LeTallec (2001)

- model incompressible flow problem
- added-mass form of the governing equations
- most primitive loosely-coupled time-integrator
- asymptotic stability when  ρS << ρF &   ∆t � 0

� Mok, Wall & Ram (2001)

- low-speed flows, lightweight (shell) structures
- weak instabilities observed when MS << KS
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� Dirichlet-Neumann inner-iterations (a la Quarteroni) 

STRONGLY-COUPLED VERSION

relatively expensive proposition, unless necessary



� Piperno & Farhat (2001)

LINK BETWEEN BOTH APPROACHES

- at convergence, inner-iterations 
conserve the energy transferred
at the fluid/structure interface

δEn+1 = pTF (δu
n+1 - δxn+1) = 0

fluid

structure

δEn+1 = pTF (δu
n+1P - δxn+1) = O(∆tq)

- parameterized loosely-coupled partitioned schemes
achieve the above property in an asymptotic sense



� Causin, Gerbeau, and Nobile (2004)

RECENT CONTROVERSY

- blood flow in large human arteries
- simplified model problem
- most primitive loosely-coupled solver (no ART)
- explicit structural time-integrator

ρF (vF
n – vF

n-1) +    pn = 0

∆

div vF
n = 0

∆t

(uS
n+1 – 2uS

n + uS
n-1) +  a uS

n = pΓ
n

∆t2



� Decomposition along the eigenvectors of the added mass
operator leads to the following characteristic polynomial

RECENT CONTROVERSY

� Unconditional unstability when

� Poor convergence rate of Dirichlet-Neumann iterations
under same condition
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ENERGY ANALYSIS

incompressibility is the source of numerical difficulties

� Incompressible flows

∆E = -2 cω∆t;  c < 0 → ∆E > 0 B-LC

∆E = (17/24) cω3 ∆t3 → ∆E < 0 SoA-LC

un+1P = un +  1 ∆t un +  (1/2) ∆t (un – un-1)

= 2p ¡ pnn+ 1pn+1R



LOW-SPEED INTERNAL FLOW

� Causin, Gerbeau and Nobile (2004)
- l   = 6.0 cm
- r  = 0.5 cm
- h  = 0.1 cm
- ρF = 1.12 g/cm

3

- v  = 3.2 m/s
- initial excitation
by an eigen mode

� Output: displacement field at node 1236

l

r

� ρS < ρF

� SoA LC with compressible flow solver



ρS < ρF

-2.5E-02

-2.0E-02

-1.5E-02

-1.0E-02

-5.0E-03

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

0.0 0.2 0.4

Time

D
is
pl
a
ce
m
en
t

x
y
z

8.9

-4.0E-02

-3.0E-02

-.0E-02

-1.0E-02

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

0.0 0.1 0.2 0.3 0.4

Time

D
is
pl
a
ce
m
en
t

x
y
z

4.46

-2.5E-02

-2.0E-02

-1.5E-02

-1.0E-02

-5.0E-03

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

0.0 0.1 0.2 0.3

Time

D
is
pl
a
ce
m
en
t

x
y
z

2.23

-4.0E-02

-3.0E-02

-2.0E-02

-1.0E-02

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

0.0 0.1 0.2

Time

D
is
pl
a
ce
m
en
t

x
y
z

0.98

-1.5E-02

-1.0E-02

-5.0E-03

0.0E+00

5.0E-03

1.0E-02

1.5E-02

0.0 0.050.1 0.15

Time

D
is
pl
a
ce
m
en
t

x
y
z

0.44ρS / ρF =



THE AGARD WING 445.6

� MS << KS 

� SoA LC with compressible flow solver
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CONCLUSIONS

� GCL
- DGCL and not GCL
- in general, not related to accuracy but is a
sufficient condition for consistency

- related to nonlinear stability nonlinear stability nonlinear stability nonlinear stability : at least for the
nonlinear scalar conservation law, it is a 
necessary and sufficient condition for 
nonlinear stability



CONCLUSIONS

� Nonlinear stability and time-accuracy
- nonlinear stability of coupled fluid/structure
algorithm hinges on nonlinear stability of
CFD scheme on moving gridsmoving gridsmoving gridsmoving grids

- time-accuracy of coupled fluid/structure 
algorithm hinges on time-accuracy of 
CFD scheme on moving gridsmoving gridsmoving gridsmoving grids



CONCLUSIONS

� Loosely coupled solution algorithms for Class III 
problems

- when smartly designed, they are VERY effective
for transient (unsteady) compressibletransient (unsteady) compressibletransient (unsteady) compressibletransient (unsteady) compressible problems

- smart design = parameterized design for control
of accuracy and energy transfer at fluid/structure
interface

- not necessarily the most effective algorithms for 
steady-state problems

- can suffer for incompressible fluid/structure 
interaction problems
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