An analytic approach to turbulence

Chuong V. Tran

School of Mathematics and Statistics University of St Andrews St Andrews KY16 9SS, United Kingdom

Abstract

An analytic approach to fluid turbulence is presented. By using well-established results and ideas in dynamical systems theory, an estimate can be derived for the number of degrees of freedom of a fluid system. Equating this estimate with the number of dynamically active modes within the system's inertial range yields a number of interesting results, which have been predicted on the basis of Kolmogorov's theory. Furthermore, a way to quantify the degree of nonlinearities of a fluid system naturally emerges from the present method. Results for surface quasi-geostrophic, 2D, and 3D Navier—Stokes turbulence are presented as examples.

REFERENCES

- [1] Chuong V. Tran, "The number of degrees of freedom of three-dimensional Navier--Stokes turbulence," *Phys. Fluids*, Vol. **21**, 125103 (2009).
- [2] Chuong V. Tran and David G. Dritschel, "Energy dissipation and resolution of steep gradients in one-dimensional Burgers flows," *Phys. Fluids*, Vol. **22**, 037102 (2010).
- [3] Chuong V. Tran, Luke A. K. Blackbourn, and Richard K. Scott, "Number of degrees of freedom and energy spectrum of surface quasi-geostrophic turbulence," *J. Fluid Mech.*, submitted (2011).