Mirror symmetric travelling wave solutions in sliding Couette flow and plane Couette flow

- BIFD2011 -

K. Deguchi^{*}, M. Nagata[†]

* Department of Aeronautics and Astronautics, Graduate School of Engineering Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 Japan e-mail: ken5-d@t06.mbox.media.kyoto-u.ac.jp

[†] Department of Aeronautics and Astronautics, Graduate School of Engineering Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 Japan e-mail: nagata@kuaero.kyoto-u.ac.jp

ABSTRACT

Sliding Couette flow (SCF) is a flow between two infinitely long concentric cylinders with radii a and b (b > a) subject to a sliding motion of the inner cylinder in the axial direction relative to the outer cylinder. In the narrow limit of the gap (*i.e.*, the radius ratio $\eta \equiv a/b \rightarrow 1$), SCF becomes identical to plane Couette flow (PCF). We continued the nonlinear solution in PCF [2] to SCF and found bifurcations of two types of mirror symmetric solutions [1]. The difference of these two types is the number of vortices in their averaged velocity field: the one of them, \mathcal{M}_4 , has four vortices whereas the other, \mathcal{M}_8 , has eight (see Figures 1 (a) and (c)). In this short paper we describe the continuation of these two types back to $\eta = 1$ and report on their counterparts, new travelling waves, in SCF (see Figures 1 (b) and (d)).

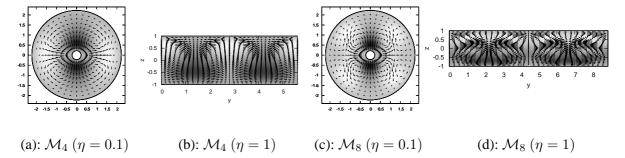


Figure 1: The fluctuation part of streamwise averaged velocity field of mirror symmetric travelling waves \mathcal{M}_4 and \mathcal{M}_8 in SCF ($\eta = 0.1$) and PCF ($\eta = 1$) (light: fast, dark: slow).

REFERENCES

- [1] K. Deguchi, M. Nagata *Bifurcations and instabilities in sliding Couette flow*, J. Fluid Mech. (accepted).
- M. Nagata Three-dimensional finite amplitude solutions in plane Couette flow: bifurcation from infinity, J. Fluid Mech. 217, 519-527, 1990.