Linear stability analysis on the evaporation of sessile drops: formation of hydrothermal waves

- BIFD 2011 -

George Karapetsas*[†], Khellil Sefiane^{††}, Richard V. Craster^{†††} and Omar K. Matar[†]

[†] Department of Chemical Engineering ^{†††} Department of Mathematics Imperial College London South Kensington Campus, London SW7 2AZ, United Kingdom

^{††}School of Engineering and Electronics The University of Edinburgh Kings Buildings, Edinburgh EH9 3JL, United Kingdom

ABSTRACT

Recent experiments on the evaporation of sessile droplets have revealed the spontaneous formation of various patterns including, under conditions, the presence of hydrothermal waves [1]. Prior to this work, hydrothermal waves have been observed, in the absence of evaporation, in thin liquid layers subjected to an imposed temperature gradient [2]. In this case, however, the temperature gradients and the drop thickness vary spatially and temporally and are a natural consequence of the evaporation process. We examine the evaporation of a droplet that has been deposited on a heated surface and investigate theoretically the mechanisms that drive pattern formation. We use the finite element method to solve numerically the axisymmetric problem and perform a linear stability analysis around this base state taking into account the presence of non-axisymmetric perturbations. We discuss our numerical results and compare them with 3D simulations, the latter performed using the volume-of-fluid method.

REFERENCES

- [1] K. Sefiane, J. R. Moffat, O. K. Matar and R. V. Craster, "Self-excited hydrothermal waves in evaporating sessile drops", *Appl. Phys. Lett.*, **93**, 074103, (2008).
- [2] M. K. Smith and S. H. Davis, "Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities" *J. Fluid Mech.*, **132**, pp. 119, (1983).