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ABSTRACT

Derivation of simplified models, based on long-wave expansions, for the description of liquid  
film flow has  a  long  history  marked  by  classical  results  such  as  the  one-equation  model  of 
Benney and the two-equation model of Shkadov [1]. A crucial test of such models is the correct  
prediction  of  the  properties  (shape,  maximum  height,  phase  velocity)  of  solitary  waves  as  a 
function of the distance from the instability threshold. The latter is usually quantified in terms of  
the reduced Reynolds  number,  =34/ 3 Re11 /9 Ka−1/3 ,  where the Reynolds  number  is  defined in 
terms  of  the  undisturbed  film  thickness  and  mean  velocity,  Re=u N hN /ν ,  and  the  Kapitsa 
number, Ka=σ / ρ ν4/ 3 g1/3 , contains only physical properties and compares capillary and viscous 
diffusive  effects.  Considering  a  vertical  wall  and  assuming  negligible  streamwise  viscous 
diffusion effects, i.e. large Kapitsa numbers, δ  is the only independent parameter of the rescaled 
equations. It is recalled that, though most models predict similar behaviour close to the threshold  
(onset of drag-gravity regime), they exhibit large differences from each other at intermediate and 
large values of δ, i.e. when inertia becomes significant (transition region and drag-inertia regime)  
[2]. Thus, rigorous simulations emerge as the only means to resolve this issue.

The present work computes accurately the properties of stationary, traveling wave by solving the  
Navier-Stokes equation by a finite-element technique [3], implemented with periodic boundary 
conditions and strong mesh refinement in the vicinity of the solitary wave. Solitary-like waves  
are  derived  by  considering  a  long  enough  computational  domain.  However,  it  is  shown that  
lengths of the order of 104-105 times the film thickness are necessary for the properties of the 
wave to converge asymptotically to the true solitary limit with accuracy of less than 0.5%.

Both the phase velocity and the wave height  exhibit  inflection points in the transition region,  
then maxima at intermediate values of δ, and finally a drop to a plateau at high enough δ. These 
are  unique  characteristics  of  the  full  second-order  model  by Ruyer-Quil  and  Manneville  [1],  
whereas all other models predict either a monotonic increase or a monotonic, asymptotic limit. In  
particular, simulations and the above second-order model agree quantitatively in the drag-gravity  
regime and the transition region to the drag-inertia regime, but only qualitatively in the drag-
inertia regime. The behaviour deep in the drag-inertia regime is found to depend on Ka, which in 
the present simulations is varied in the range 200-10000. With increasing  Ka, the maxima that 
occur at intermediate δ become steeper. However, whereas the high-δ limit of the phase velocity 
appears almost unaffected, that of the wave height increases  roughly linearly with  Ka,  which 
underlines the stabilizing effect of viscous diffusion at low Kapitsa numbers.
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