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ABSTRACT 

Many time-critical applications in science and engineering (e.g., model predictive control, Bayesian 
inference) demand the accuracy of high-fidelity physics-based models, yet cannot afford their 
computational cost.  To reduce this computational burden, a variety of reduced-order modelling (ROM) 
techniques have been developed. These methods can be categorized as exhibiting continuous optimality or 
discrete optimality. Continuous-optimal ROMs perform a projection process that leads to an optimality 
property at the time-continuous (i.e., ordinary differential equation) model; such ROMs dominate the 
literature, and include the ubiquitous proper orthogonal decomposition (POD)–Galerkin method. On the 
other hand, discrete-optimal ROMs employ a projection process that results in an optimality property at the 
time-discrete (i.e., algebraic) level. This class of methods is far less common, and includes residual-
minimizing techniques [1] such as the Gauss–Newton with Approximated Tensors (GNAT) technique 
[2,3]. 

To date, the relationship between continuous- and discrete-optimal ROMs has not been adequately 
characterized. For example, the expression of discrete-optimal ROMs as a low-dimensional (time-
continuous) ODE has not been shown. Further, the performance of discrete-optimal ROMs as a function of 
discretization parameters has been largely unexplored. 

In this work, we provide a consistent analysis framework to relate these two classes of reduced-order 
models. This analysis reveals equivalence of the two classes of ROMs in certain limits. In addition, we 
characterize the error of discrete-optimal ROMs and show that the error bound depends strongly on specific 
discretization parameters that are often overlooked or ignored in the context of model reduction. We also 
provide a mechanism for selecting such parameters to improve the accuracy and stability of discrete-
optimal ROMs. Finally, we demonstrate the practical implications of these analytical results on a large-
scale, unsteady problem in computational fluid dynamics characterized by over one million unknowns. 
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