Error Estimation for Isogeometric Analysis of the Stokes equation

Abdullah Abdulhaque ${ }^{1}$, Trond Kvamsdal ${ }^{1}$, Mukesh Kumar ${ }^{2}$ and Arne Morten Kvarving ${ }^{3}$
${ }^{1}$ Department of Mathematical Sciences
Norwegian University of Science and Technology, Trondheim, Norway e-mail: abdullah.abdulhaque@ntnu.no, trond.kvamsdal@ntnu.no
${ }^{2}$ Department of Mathematics College of Charleston, South Carolina, USA e-mail: kumarm@cofc.edu
${ }^{3}$ Department of Applied Mathematics and Cybernetics SINTEF ICT, Norway e-mail: arne.morten.kvarving@sintef.no

Key Words: Isogeometric analysis, error estimation, adaptive refinement, Navier-Stokes equation.

In this article, we will develop and present suitable error estimators for adaptive mixed isogeometric methods for solving the Stokes and Navier-Stokes equations. We will compare the use of residual-based error estimators with recovery-based methods [1]. The adaptive refinement will be based on the use of LR B-splines [2], and the recently proposed methods using isogeometric Taylor-Hood, Sub-grid Taylor-Hood [3], and div-conforming elements [4]. The different estimators will be thoroughly tested on problems with (manufactured) analytical solutions.

REFERENCES

[1] Kumar, M., Kvamsdal, T. and Johannessen, K. A. Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 316:1086-1156, 2017.
[2] K. A. Johannessen, T. Kvamsdal, and T. Dokken. Isogeometric analysis using LR Bsplines. Computer Methods in Applied Mechanics and Engineering, 269:471-514, 2014.
[3] Andrea Bressan and Giancarlo Sangalli. Isogeometric discretizations of the Stokes problem: stability analysis by the macroelement technique. IMA Journal of Numerical Analysis, 33:629-651, 2013.
[4] K. A. Johannessen, M. Kumar and T. Kvamsdal. Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines. Computer Methods in Applied Mechanics and Engineering, 293: 38-70, 2015.

