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Abstract. Bacterial biofilm plays a vital role for many technical and medical applications.
Predicting biofilm growth with mathematical models requires solving the balance equations
for species and nutrients as well as for biofilm numerically. We consider the model in the
continuum mechanics framework, which means the growth of different components of
biofilm is governed by a time dependent advection-reaction (AR) equation. To find fast and
robust solution schemes for the advection-diffusion-reaction (ADR) equation is challenging,
especially under the situation of convection-dominated transport and highly nonlinear reaction
terms involved. In this paper, the recently developed time discontinuous Galerkin (TDG)
method combined with a stabilization technique called finite calculus (FIC) method has been
successfully applied to solve a multi-dimensional multi-species biofilm growth model. The
biofilm interface in the model is described as a convective movement following a potential
flow coupled to the reaction inside of the biofilm. Nutrients (oxygen in this paper) diffuse
through a boundary layer on top of the biofilm interface. A rolling ball method is applied to
obtain a boundary layer of constant height. Different patterns of biofilm during the growth
obtained from the numerical simulations are studied, and the influence of the parameters on
the patterns and the performance of the model are also discussed in this paper.

1 INTRODUCTION

Bacterial biofilms are notorious, especially in clinical applications. They are responsible
for most of human infections, and meanwhile the disinfection rate by antibiotic of a biofilm
normally is much lower than planktonic bacteria. Even though the definition of biofilm is
very diverse, some common components of bacterial biofilms are widely observed form
experimental studies, such as the active bacteria, inert or dead bacteria and the extracellular
polymeric substance (EPS) produced by the active bacteria. The combination of those
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components may influence the profile of biofilms as well as the patterns of biofilms generated.

To predict biofilm growth, numerical models are useful. However various modeling
strategies are discussed in literature. Generally, there are two main categories of biofilm
models, the continuum models [1] [2] and discrete element based models [3] [4].

Continuum biofilm models differ, depending on the assumptions are made. In this paper, a
multi-dimensional multi-species biofilm model developed by Alpkvist and Klapper (A-K
model) [1] is used by considering two different components of biomass namely the active
biomass and inert biomass within a biofilm. We present a new numerical strategy to simulate
the biofilm growth process with the A-K model. The time discontinuous Galerkin (TDG)
method [5] is applied to solve the transport equations of biomasses. The instability property
that comes from the advection part of the PDEs is sufficiently controlled by Finite Calculus
(FIC) method [6]. The biofilm-fluid interface is captured by setting up a threshold value of the
total biomass explicitly. Newton-Raphson method is applied to solve the linearized equations.
We assume a boundary layer above the biofilm-fluid interface with a constant thickness. The
flow in the boundary layer is not captured by the model, but the diffusion of substrates
through the boundary layer is taken into account. The boundary layer is modeled explicitly by
using a rolling ball algorithm. The growth limiting substrate (oxygen) diffuses into the biofilm
from the top of the boundary layer.

In this paper, the A-K model is briefly presented in the second section, and the numerical
aspects will be discussed in the third section. Numerical examples and results will be
presented in the fourth section.

2 MATHEMATICAL MODEL

The biofilm model is considered within a computational domain of

0:— {x: (x,2):0<x<W,0<:z §H} as illustrated in Figure 1.
z=H

Figure 1: Two-dimensional illustration of the computational domain 2 (Redrawn from [1])

The system contains a time dependent fluid domain F, and a time dependent biofilm domain
B,, the biofilm-fluid interface is denoted as I', =F N B, . The growth of biofilm is limited by
the concentration of specific substrates that are known as the growth-limiting substrates. A
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boundary layer with a constant thickness is assumed above I'. . The growth-limiting
substrates are assumed to be fully mixed above the boundary layer (the bulk fluid domain)
and diffuse from the top of the boundary layerI', into the biofilm. The domain below I',
denotes the time dependent substrates transport domain S, .

The A-K model developed by Alpkvist and Klapper [1] is presented here abbreviatively.
Oxygen is chosen as the only biofilm growth-limiting substrate with a concentration of s, and
diffuses from the top of the boundary layer T', . The mass balance of oxygen reads

—DV?s = —Ulﬁl p2 ,XES,
Y ko +s
s=3 xel'y (1)
(9 SZO ,XEFS,

where D is the diffusivity of oxygen, and 5 is a constant value of the concentration of
oxygen. ft, ¥ and k, are constant parameters of the model and p is the density of the

biofilm. I"* :— 9S, NN is the Neumann boundary for oxygen, and n_ denotes the normal

vector of I'*. The biofilm growth is modeled as advective transport following a potential flow
driven by consumption and production. The biofilm is assumed as a potential flow and thus

the growth velocity reads
u=—-AVp, )

where A is the Darcy constant and p = p(x,t) is the pressure. x={x,z} refers to the

coordinates system of the computational domain. The pressure p is described by

7>‘V2p:/u1 luk —|—S/€d] ) XGB“ (3)
0,
p=0 , xel' .,
8n]p:() , XGFP,

where ' :— 9B, NI is the Neumann boundaries for pressure. n, denotes the normal

vectors of I'”. Two kinds of biomasses, namely the active biomass and inert biomass, are
considered in this paper. The active biomass will grow by consuming oxygen, and it will also
decay with a constant rate x, . Meanwhile, the active biomass transfers to the inert biomass
with an inactivation rate x,. Those two kinds of biomasses compose the biofilm. The
evolution of the volume fractions of the active biomass v, and the inert biomass v, are
described as

oy, s ) s
— - AVpVu, =v | y———K, — K, |—v —K , X€EQ, 4
o1 P | 1 Mkoz d . | 'ukoz p dJ 4)
8”2—W Vv, =v,K — VU S & xe
ot p p) i ) Nk02+s d > )
9,,v, =0 (j=12) , X€of.
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where n, denotes the normal vectors of 9€2.

3 NUMERICAL ASPECTS

In this section, the numerical techniques used in this paper to solve the model described
above are presented. Standard Finite Element (Galerkin) method are employed to solve the
equations (1) and (3). A combined FIC-TDG method [5] is applied to solve the equations (4).
The biofilm-fluid interface is characterized explicitly by a threshold value of total biomass v" .
A roller ball algorithm is developed to determine the boundary layer of oxygen.

3.1 Time-discontinuous Galerkin (TDG) scheme for advection-reaction PDE

The first publication on TDG method presented by Hughes and Hulbert indicate that the
method is A-stable [7]. Recently, Sapotnick and Nackenhorst [5] present a stabilized TDG
scheme to solve a group of time dependent advection-diffusion-reaction equations with a
combined TDG -FIC method.

The nonlinear time dependent advection-reaction equations (4) can be generally written as

)
a—';+ uVo— f(v)=0, (5)

where v = (v,,v,) 1s a vector of the volumetric fractions of biomasses. The temporal weak
form of equation (5) reads

~

fy %ﬂ-v{)—f({))]dt =0, (6)

7,

where v is the weight function in 7, = ]tn_l,tn[ (as shown in Figure 2) which refers to the nth

time interval, and v refers to the approximation of the dependent variables in time.
Q(f — SZ(Z X 7-7'1

t

tn
t’ll 7;L

n—1

Yy
Figure 2: TDG time-space element (Redrawn from [7])
The weight function and the variable value on a discrete node are discontinuous (as shown

in Figure 3) in TDG scheme, and the two different values on the same node are marked with
“— ”and “+ ” separately. Integration of equation (6) by part twice yields
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~

o

- de+v, [v.] =0, (M)

[v

7,

+uVo— f(f))

where
~ /\Jr A~
|[1)n71 H = Vn-1 — V-1, (8)
refers to the jump of v on the discontinuous temporal point ¢,_,. Discretization of equation (7)

in space with standard Finite Element method, the linearized equation (7) is solved iteratively
using Newton-Raphson method. The fully discretized equation reads

lTa (NN +T,@ ((—Nﬁu,N)e ~(N7 f’(oZ),N)e) Av 9)
=T,® (v, .N") =T, ®(N".N] v}
~T, ®[—(—Niu,N)e v} —(f(nf),NT)e )
where
(m,n)e = | mnd(), (10)

f /(1):> denotes the derivate of function f (1):) , and v is the temporal-spatial solution of the

independent variables of the k th iteration. T,, T, and T, are matrixes only related with the
temporal shape functions N ,and IV are the shape functions for spatial approximations.

\
v(x,t)

analytical

——~ FE approximation

Figure 3: Temporal approximation with linear shape function in TDG scheme (Redrawn from [5])



D. Feng, I. Neuweiler and U. Nackenhorst

3.2 Finite calculus (FIC) method for stabilization

The Finite calculus (FIC) method has been firstly introduced by Onate et al. [6] to stabilize
the hyperbolic dominated advection-diffusion-reaction (ADR) PDEs. The basic idea of the
FIC method is by considering the balance of flux of a one dimensional problem in a finite
domain using Taylor series expansion theory.

Applying the FIC method to the linearized stationary one dimensional advection-reaction
equation reads

hdr
—— = =0, 11
: 2 dx (1D
dv
= —u—+ K, 12
r u KU (12)

where 7 is a characteristic length scale related to the size of the finite domain which differs
with different elements, and ~ is a reaction coefficient. The FIC formulation of the one
dimensional time dependent advection-reaction equation reads

ov h dr
ot 2 dx (13)
Integration of equation (13) with the weight function w leads to the weak form
f wu +wu%—w&v]d9+zfﬁwzd9 =0. (14)
X

Q

The last term in equation (14) acts as an additional diffusive contribution to the standard
Galerkin procedure as

Zf%w%d(le (15)
h dw dv dw
=2 [ 5. = Zf [‘”_ ]Edg

e qQ,
u— /-w[dv] ]d—vd—WdQ

¢ Q,

_Zf de dx ¢

For a two-dimensional case, the additional diffusive contribution is added by transforming

the additional element diffusion matrix D" from the local principle curvature directions (&
and 1) of the solution into the global coordinates [6]

DI =T'D"T, (16)
where

(17)

and ¢ is the angle between the direction of the global coordinate system and the principle
curvature direction of the solution.

T— cosyp  siny
B —sing  cosg)’
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3.3 Interface and boundary layer

The biofilm-fluid interface is determined by the contour line of the total biomass volume
fraction of a constant value v

L, — contour{z v, = v*}, (18)
and v" = 0.9 is taken in this paper.

A rolling ball algorithm is applied to the contour line I'
boundary layer (as illustrated in Figure 4).

to determine the location of the

int

.......

Substrate
boundary layer|~, |

Biofilm surface \_/

Figure 4: Rolling ball method to determine the boundary layer

and the
trace of the ball’s center denotes to I', . The detail procedures of the algorithm is illustrated as

The boundary layer is determined by rolling a rigid ball of a radius of H, on T,
1) Compute the tangent vector ¢, and normal vector n; at the point i on I', ,
2) Compute the corresponding coordinates X, on T,
X/=X,+H,n,, (19)
where X = (X VA ) refers to the coordinates of the biofilm-fluid interface.
3) Check if the ball and the biofilm-fluid interface I',, overlaps. A distance function is
defined as
F(X)=(X-X)) +(z-2z/) —H. (20)

For arbitrary point i on I'. , if E(X )20 is always satisfied, point X/ is marked as a

int ?
point on I, , otherwise, it is not taken as a point on T, . An alternative form of F, (X ) which
can tolerate a certain amount of discrete error is used in this paper as

F(X)=(X-X) +Z-z)—(H,-¢), 1)

1 1 1

where ¢, is a parameter that related to the grid size. Here we choose
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J

1
6. =—minid. ¢, for j=12,..4 22
=5 min{d,} J (22)

where d refers to the length of the edges of the element which contains point 7 (on T'; ).

4 RESULTS

For computational convenience, the dimensionless form of the governing equations are
solved in a dimensionless domain €2, :— [0,1]x[0,1]. The dimensionless variables as well as
the constant parameters of the model refer to [1]. The initial conditions of the volume fraction
of biomasses are given as v, =1 and vy = 0, and the initial biofilm-fluid interface is defined
as

nt

I s Z=0240.05 sin[47rX +%] 23)

The thickness of the boundary layer is chosen as H, = 0.15(as shown in Figure 5).

Here we present two representative sets of simulation results as shown in Figure 6 and
Figure 7. The only difference between those two groups of results is the choice of the inactive
rate k.. For the results shown in Figure 6, an inactive rate of k&, =1.0x10~° is taken (refers to

set 1), while k£, = 6.0x107° is used corresponding to the results shown in Figure 7 (refers to

set 2). The decay rate of these two sets of simulations is chosen as k, =2.0x107°. The

colours in the figures represent the volume fractions of the biomass. The volume fractions of
both the active biomass and the inert biomass after 5 days, 15 days and 20 days are presented.
The biofilm-fluid interface I', , is colored by a white curve in the figures.

Different patterns of biofilm are reproduced by the numerical simulation. The well-known
finger pattern is reproduced in set 1, and the flat pattern is observed in set 2. Both of those
two sets of simulations show that the active biomass prefer to distribute at the top of the
biofilm while the inert one distributes more at the bottom with increasing time. This is due to
the growth limiting substrate, which is oxygen in this paper that has a higher concentration at
the top of biofilm, and the active biomass is produced by consuming oxygen.

L
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——Biofilm-Fluid interface
===Boundary Layer
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Figure 5: Initial conditions for the biofilm simulation
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Total Biomass Active Biomass Inert Biomass
t=5
(day)
t=15
(day)
t=20
(day)
Figure 6: The simulation result of setl (k, =1.0x10"")
Total Biomass Active Biomass Inert Biomass
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Figure 7: The simulation result of set2 (k, = 6.0 10’6)
5 SUMMARY

A new numerical strategy for simulating biofilm growth with A-K model has been
presented in this paper. The combined FIC-TDG finite element method is applied to solve the
transport equations of biomasses and a rolling ball algorithm is applied to determine the top of
a boundary layer above the biofilm surface.

Different patterns of biofilm are produced by the numerical simulations. The distribution
of different biomasses is also observed from the simulation results. The numerical framework
presented in this paper is shown to be sufficiently robust to simulate the biofilm growth
problem with A-K model.
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