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Abstract. We study the formation of trails by Argentine ants (Linepithema humile) when 
foraging in an empty arena. To do so, we first investigate the individual behavior by analyzing 
some experimental data. Based on these observations, we provide a distribution for the 
random change in direction that they approximately undergo while foraging as a mixture of a 
Gaussian and a Pareto distribution. As explained in previous work, two main ingredients are 
necessary in the model for the motion of ants in the plane: persistence and reinforcement. 
Numerical simulations based on this model lead to the formation of branched ant-trails similar 
to those observed in the experiments. 

 
 
1 INTRODUCTION 

     In the recent years, many scientists have been studying the mechanisms by which a 
collection of individuals manage to communicate and organize themselves in order to produce 
a collective behavior or achieve some goal. This includes the pattern formation in slime molds 
and bacteria, fish schooling, bird flocking, trail formation in ants, etc. As a consequence, the 
study of these self-organization oriented to the achievement of a collective animal behavior is 
currently a very intense area of research in the frame of complex networks and a source of 
new and interesting mathematical problems (see, for instance, the books [1-3]). 
 
    There are many problems related to complex networks. Among the most interesting 
biological ones is the formation of large and intricate trail networks by multiple species of 
ants [4-8]. Their patterns that can extend up to a hundred meters from the nest result from the 
collective activity of thousands of individual workers laying and following pheromone trails 
as they explore and exploit their environment. Previous studies have shown that ant trail 
networks, formed by individuals with very limited cognitive capabilities, are nonetheless 
particularly efficient structures to facilitate the rapid exploitation of resources [9-11] and the 
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movement of ants across their territory [7]. This raises the following question: how can a 
group of cognitively limited individuals, with access to partial and local information only, 
build such efficient, large scale structures? From a mathematical point of view, the question 
can be reformulated as follows: what is the minimal set of ingredients that a model must 
incorporate to give rise to networks similar to those of ant colonies? This question can be 
extended to other self-organized network systems, such as the galleries of ant nests [12], but 
also trail systems created by humans [13, 14]. 
 
     In order to answer this question, recent experimental and theoretical studies [11, 15, 16] 
have investigated the individual and collective behaviors of Argentine ants (Linepithema 
humile) when navigating graphs (i.e., networks of constrained paths). These studies suggest 
that a mechanism for the formation of ant trails should include an attractive, durable signal 
(pheromone) as well as motion persistence, that is, the tendency to move straight in the 
absence of external information. This kind of motion is known in the mathematical literature 
as reinforced random walk [17-19] and it is sufficient to reproduce the individual and 
collective movement patterns of ants on graphs [16]. 
 
     In the present article, we propose to extend the previous findings by considering the 
motion of ants in the plane. In this situation, ants can significantly change direction at any 
point of their motion and not only at discrete points on a graph. Using experimental 
observations of ants exploring an empty circular arena, we will estimate the distribution of 
their direction changes and the degree of persistence of their motion. Based on this 
information, we will propose a model of the spontaneous motion of ants (i.e., in the absence 
of external information). We will also model the trail-following behavior of ants after the 
results of [20]. [20] shows that ants turn in response to the current, local pheromone 
distribution, while their speed is unaffected by the presence of pheromone. The response of 
ants to the local pheromone distribution follows Weber's Law: the difference between the 
quantities of pheromone on both sides of an ant divided by their sum determines the 
magnitude of the ant's turning angle. In our model however, we will not only consider the 
pheromone quantities on both sides of an ant, but we will instead integrate pheromone 
concentration over a circular sector that can be thought of as the region that can be reached by 
the ant's antennae. We will implement Monte-Carlo simulations of the complete model 
(motion persistence plus trail-following) and we will show that these simple rules are 
sufficient to create trail networks. 
 

2 METHODS AND RESULTS 

We perform two different types of experiments: in the first one we study the individual 
behavior of ants when foraging and in the second one we study the collective behavior and the 
formation of trails when foraging in an empty arena. To do so, we record the trajectories to 
collect data regarding the change in direction measured by the direction angles and perform a 
statistical analysis to find the best probability distribution that fit our data. Further details can 
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be found in [20, 21]. 

2.1 Individual trajectories 

In the case of individual ants, in order to know the distribution of the difference in the 
direction angles when an ant moves, we consider 40 different ants and compute the variation 
in the direction between one step and the next one. We find that the best fit is a mixture of a 
Gaussian (for |α|<2σ) and Pareto (in the tails, for |α|>2σ) distributions (suitable normalized): 

 

 

(1)

  

where α is the angle, µ is the mean and σ is the standard deviation of the Normal distribution. 
There are 3 further observations to take into account when modeling ants as random 

walkers: 
1. There exists a dependence between the length of each step of the random walk and 

the deviation angle: long steps are taken when the deviation is small while short 
steps are associated to a very large deviation. 

2. When ants stop they take relatively long times before deciding in what direction to 
make the next move. 

3. The average of the angle of deviation of the ant taken as a random walker is not 
zero in general. 

Considering these observations, we perform Monte Carlo simulations for the ants and 
check that the simulations represent very well the experimental results (see figure 1 for an 
example). 
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Figure 1: Comparison between the experimental path of ant 7 (left) and our random walk simulation (right). 

2.2 Collective behavior: ants in a petri dish 

     In order to describe the collective behavior of ants when foraging in an empty arena, we 
perform Monte Carlo simulations to reproduce the experimental results reported in [20]. In 
each simulation we consider 500 ants that depart sequentially from the center of the circular 
arena. Ants start entering the arena soon after they are given access to it. In the simulations 
ants are treated as point-like objects and they deposit pheromone at every time step. We also 
consider evaporation effects as measured in real experiments so that, once the pheromone is 
deposited it evaporates according to an exponential law. Ants leave the center of the disc with 
a random initial direction. At every time step, the ant measures the amount of pheromone at 
the current position. In order to compute the new direction, we take into account a parameter 
that measures the importance of the pheromone-induced reinforcement. Before computing the 
new direction for the ant we introduce a noise term following the mixed Normal+Pareto 
distribution. We check if the ant is at the boundary and if so, we project the arrival direction 
over the tangent to the boundary and declare the new direction to be that of the tangent. The 
different values for the parameters are taken from the experiments (see [21] for a complete 
explanation). 

     We treat ants as pure random walkers when they detect an amount of pheromone that is 
below a certain threshold that represents the minimum amount of pheromone inducing the ant 
to respond to the chemical signals left by fellow ants. When the ant detects an amount of 
pheromone concentration beyond a certain threshold the motion is computed as the 
superposition of a random walk and reinforcement proportional to the gradient of the amount 
of pheromone. Next, we perform a suitable normalization of the new direction and introduce a 
restriction for the possible changes in direction (the change in direction cannot be larger than 
a certain angle α0=π/3, similarly as in [20]). Finally, when measuring the amount of 
pheromone in the neighborhood of the ant we only consider the points inside a sector with 
angle α1=π/3 around the direction of the ant (ants can only measure the amount of pheromone 
at certain angles that can be reached with the ant’s sensors). 

     We have implemented the model described above with the parameters computed in the 
statistical analysis of real experiments. If we follow the evolution in time (see figure 2) the 
process of path ramification can be identified. In figure 2 we represent the evolution for 
N=500 ants at times 400, 800, 1200 and 1600 s. Notice that at early stages the behavior is 
diffusive, with the highest concentration of pheromone at the center of the disc, but an 
instability eventually develops and filamentary structures start to be created and progressively 
reinforced until a ramification network of paths between the disc center and the boundary is 
formed. 



M. Vela-Pérez and M. A. Fontelos 

 5

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000
100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

 
 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000
100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

 
Figure 2: Concentration of pheromone after 6.67 min. (top left), 13.33 min. (top right), 20 min. (bottom left) and 
26.67 min. (bottom right) with N=500. The red color means high concentration/visits, the blue color implies low 

concentration/visits. 

4 CONCLUSIONS 

     We have described a model simulating the behavior of ants when foraging individually and 
a model that describes the formation of pheromone trails in the plane. Following the ideas 
presented in [16] we have considered the combination of reinforcement and persistence. That 
is, we consider ants as reinforced random walkers where the probability of moving in a 
specific direction is influenced by the concentration of pheromone near them, and we also 
consider persistence (tendency to keep the previous direction in the absence of any external 
effect). 
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     We have also provided a distribution for the random change in direction that ants undergo 
while foraging, based on experimental observations. To do so, we have integrated pheromone 
concentration over a circular sector that can be thought of as the region that can be reached 
with the ant’s antennae by turning its head. The Monte Carlo simulations show that after 20 
minutes a branch-like pattern of trails has clearly developed. Later, ants reinforce both the 
trails and the boundary, as is the case for real experiments. 
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