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Abstract. Huynen and van Nimwegen 1998 proposed the stochastic multiplicative process, to 

model the size of gene families at time period t, St =1…t−1 t  where i are random 

multiplication environmental factors that are statistically independent at each time period, and 

identically distributed, assuming that at t = 0 a gene family is founded by a single ancestor, 

and that the duplications and the deletions are coherent with respect to the genes within one 

gene family. Based on this scheme, we analyze the probability distribution of the size of gene 

families at any time period using some results in Ortega and Li 2010,2015: we study the 

contraction pattern of the size of gene families using an ageing notion called Decreasing 

Proportional Failure Rate Property defined in Belzunce, Candel and Ruiz 1998, discuss the 

influence of the magnitude of the distribution of the environmental factors on the hazard rate 

and the reversed hazard rate of the size of gene families, and apply a stochastic bound as a 

quantitative measure of the expansion or the contraction of gene families in the genome. The 

assumptions on the distribution of the environmental factors are compatible with the 

lognormal model, that has been proved to fit well. The results are extended to positively 

correlated environmental factors by applying results in Ortega and Alonso 2014. We conclude 

that our results agree with the scientific evidence that if a certain gene is likely to duplicate 

then all the genes of its family are likely to duplicate in the genome, and that the increase in 

gene number with increasing biological complexity involves the expansion of families of 

closely related genes.  

1 INTRODUCTION 

The expansion or the contraction of gene families along a specific phylogenetic tree is 

determined by molecular processes that can be due to chance and result of natural selection. 

Diverse mathematical models have been proposed in the literature to describe the size of gene 

families in the complete genome and its probability distribution has been studied under 
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different biological hypothesis using statistical models and algorithms. In this paper, the 

Huynen and van Nimwegen (1998) model for the size of gene families at any time period t is 

analyzed using the results and the methods in Ortega and Li (2010,2015) and Ortega and 

Alonso (2014). Huynen and van Nimwegen (1998) proposed the stochastic multiplicative 

process, with random multiplication environmental factors that are statistically independent at 

each time period, and identically distributed to model the size of gene families at any time t. 

Let us start by the description of the size of gene families at any time period t. Assuming that 

at t = 0 a gene family is founded by a single ancestor, and that the duplications and the 

deletions are coherent with respect to the genes within one gene family, that is, if a certain 

gene is likely to duplicate then all the genes of its family are likely to duplicate in the genome; 

and analogously, if one gene is likely to be deleted then all genes of its family are as likely to 

be deleted from the genome. Through duplications and deletions the size of gene family will 

fluctuate with the possibility that the family eventually is going to extinct from the genome 

(in fact, no gene family lives forever in any particular genome unless other mechanisms 

prevent them from going extinct), and if the duplications and the deletions of genes are 

observed at any unit of time (observations times are unit times), then the size of gene families 

at time period t is St =1…t−1 t , with this formula that will be called Equation (1.1), where 

i  i=1,…,t are random multiplication environmental factors drawn at each time step from a 

distribution function F of a random variable  with the assumptions that  i  , i = 1, ..., t are 

statistically independent at each period time of observation of the genome, and that Prob( = 

a) is peaked around a = 1. Notice that the distribution of the environmental factor is 

compatible with the lognormal model. Our main objective is to provide a probabilistic 

approach with discussion for the random variable in Equation (1.1) under an arbitrary 

distribution of the environmental factor. The mathematical methods used in the paper are 

stochastic comparisons, bounds and ageing models for non-negative random variables, that 

can be seen in Shaked and Shanthikumar (2007). In Section 3, we study the contraction 

pattern of the size of gene families using an ageing notion called Decreasing Proportional 

Failure Rate Property which is defined in Belzunce et al. (1998). We also study the influence 

of the magnitude of the distribution of the environmental factors i  , i = 1, ..., t  on the hazard 

rate and the reversed hazard rate of the size of gene families by using some results in Ortega 

and Li (2015). In addition, we apply a numerical bound in Ortega and Li (2010,2015) for the 

risk function of the size of gene families at any time period, which provides a quantitative 

measure of the expansion or the contraction of gene families at any time of the 

evolutionary process. The results are extended to the case of positively correlated 

environmental factors by applying results in Ortega and Alonso (2014). 

 

2 MATHEMATICAL METHODS AND PRELIMINARIES. 

In this section we recall some concepts that constitute the mathematical instruments to 

analyze the random variable that represents the size of gene families at any time period. 

Consider an absolutely continuous lifetime (non-negative random variable) X, with 

probability density function f, cumulative distribution function F, risk function 1-F. The 

hazard rate r of X is defined for any x such that 1- F(x) > 0, by r(x) = f(x)/(1-F(x)). Observe 

that r(x) can be thought as the intensity of failure of a unit, with a random lifetime X, at time 
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x. The hazard rate, also called as failure rate or mortality rate, is a very known concept with 

many applications in probability and statistics, reliability, survival analysis, insurance and 

finance, and other research areas. As Shaked and Shanthikumar (2007) notices, the higher the 

hazard rate is, the smaller X should be stochastically. 

The reversed hazard rate of X for any x such that F(x) > 0 is defined by a(x) = f(x)/F(x) (see 

Keilson and Sumita (1982) and Shaked and Shanthikumar (2007)). From the reversed hazard 

rate, the random variable [x − X|X _ x] can be used to predict the exact times of occurrence of 

events because a(x)dx represents the probability of failing in the interval (x − dx, x), when a 

unit is found failed at time x. This concept is useful in casualty insurance, reliability, 

demography, epidemiology and medicine (forensic science) to predict times of occurrences of 

events. For example, the incubation times of diseases, i.e. durations from the infection until 

the disease occurrence, are difficult to measure because the infection time is unobserved in 

general. Some examples of prediction using this function are given by Keiding (1991). 

The generalized failure rate of X is given by gr(x) = xr(x) (see Belzunce et al. (1995,1998)). 

It measures at any income, the odds against advancing further to higher incomes in a 

proportional sense (it also represents the slope of the risk function of incomes in the Pareto 

diagram) (see Kleiber and Kotz (2003)). Belzunce et al. (1998) introduced the increasing 

proportional failure rate property, as a generalization of the increasing failure rate ageing 

notion, by requiring that gr(x) = xr(x) be increasing. This notion was studied by Lariviere and 

Porteus (2001), who named it Increasing Generalized Failure Rate, denoted by IGFR.  

The reversed proportional failure rate of X is defined for any x > 0 by e(x) = x f(x)/F(x) , also 

known as the elasticity function (see Dagum (1977)), where f(x)/F(x) represents the reversed 

hazard rate at x. The decreasing reversed proportional failure rate property, denoted by 

DRPFR, is a related ageing notion that is characterized by an elasticity function e(x) = x f(x) 

F(x) being decreasing, and was introduced in Belzunce et al. (1998). For recent probabilistic 

properties of the IGFR and the DRPFR notions, we refer to Ortega and Li (2010, 2015) and 

references therein. 

Finally, we give the definitions of some stochastic comparisons that will be useful (see 

Shaked and Shanthikumar (2007)). Let X and Y be two absolutely continuous lifetimes, with 

cumulative distribution functions FX and FY , hazard rates rX and rY , and reversed hazard 

rates aX and aY , respectively. X is said to be smaller than Y in: 

i) the hazard rate order, denoted X<hr Y , if rX(x)≥ rY (x) for all x > 0. 

ii) the reversed hazard rate order, denoted X <rhr Y , if for all x > 0, aX(x)≤ aY (x). 

3. A DISTRIBUTIONAL PROPERTY OF THE SIZE OF GENE FAMILIES. 

The following property is based on Theorem 3.3 in Ortega and Li (2015), that states the 

closure by products for the DRPFR notion that was pointed out by Badia (2010). 

Property 3.1. Let i  , i = 1, ..., t  be independent DRPFR absolutely continuous non-negative 

random variables, then, St =1…t−1 t  , is DRPFR. 

 

The DRPFR reveals a pattern of contraction of the gene families at each time period to assess 

how the experimental researchers can act by influx of new genes and/or by reflective 

boundary conditions strongly against the deletion of the last gene within a gene family. We 

recall that a gene family of size one acts as a reflecting boundary for certain gene families 
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thus prevents them from going extinct, and alternatively, an occasional introduction of a gene 

from a new family into the genome, for instance by horizontal gene transfer, that is influx of 

new genes, may avoid that the family becomes extinct in the genome (see Huynen and van 

Nimwegen (1998)). Experimental studies proved that no gene family lives forever in any 

particular genome unless other mechanisms prevent them from going extinct. Let L denote the 

maximum value of the random variable of the size of gene families. The reversed hazard rate 

of the size of gene families is an infinitesimal as a function with domain given by the interval 

[0,L]. Under the assumptions of the Property 3.1, the proportional reversed failure rate of the 

size families converges, since it is decreasing and bounded. Using functional analysis, the 

product of an infinitesimal with a bounded function is also an infinitesimal, hence the 

proportional reversed failure rate of the size of gene families is an infinitesimal too. 

4. STOCHASTIC COMPARISON OF THE SIZE OF GENE FAMILIES 

From now on, we will denote St =1…t−1 t  , and St 
*
 = 


1…


t−1 


t , . 

Next property follows from Theorem 4.2 in Ortega and Li (2015). 

Property 3.2. Let {(i , i
*
 )|i = 1, ..., t} be independent pairs of absolutely continuous IGFR

 

non-negative random variables, such that  i<hr i
*
 , for i = 1, ..., t. Then, St <hr St 

*
. 

 

This property means that the probability of one gene deletion leading to the contraction of the 

family, given that the size of the family is larger than x, at any time period t, increases or 

decreases as at the time t = 1, i.e., at the beginning of the evolutionary process. This result 

agrees with the coherence assumption by Huynen and van Nimwegen (1998), which means 

that if a certain gene is likely to duplicate, then all the genes of its family are likely to 

duplicate in the genome; and if one gene is likely to be deleted, then all genes of its family are 

as likely to be deleted from the genome. Experimental studies show that in general, an 

increase in the number of large gene families is expected versus the number of small gene 

families as the number of genes in a genome becomes larger. This trend is supported by the 

Property 3.2 because for large gene families the deletion probabilities are decreasing at any 

future time periods. For Huynen and van Nimwegen (1998) this fact leads to competition 

between the gene families for space in the genome is effectively bigger in a smaller genome 

which leads to a smaller value of μa, that is, the larger competition in smaller genomes yields 

to shorter average lifetimes of gene families in these small genomes. 

Another related property follows from Theorem 4.6 in Ortega and Li (2015). 

 

Property 3.3. Let {(i , i
*
 )|i = 1, ..., t} be independent pairs of absolutely continuous 

DRPFR non-negative random variables, such that  i<rhr i
*
 , for i = 1, ..., t. Then, St <rhr St 

*
. 

 

 

This property means that the probability of one gene deletion leading to the contraction of 

the family, given that the size of the family is smaller than x, at any time period t, increases or 

decreases as at the time t = 1, i.e., at the beginning of the evolutionary process. 
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5. STOCHASTIC BOUND OF THE SIZE OF GENE FAMILIES 

For practical instances, we provide a lower bound for the risk function of the size of gene 

families at any time based on its distributions moments and Theorem 5.2 in Ortega and Li 

(2015). Since the majority of the proteins in the life come from a limited number of families, 

this bound is of interest in experimental studies. 

Property 3.4. Let  be an IGFR absolutely continuous non-negative random variable with 

finite moments of the first three order, and  i, i = 1, ..., t be independent and identically 

distributed as , with St =1…t−1 t  . Then, for any t, x≥ 1, with μk = E[S
k

t], for k = 1, 2, 3, 

Pr(St > x) ≥ x
[(-6(

)
3
)/(2μ3−3μ1μ2+(1+2log(μ1))3μ

3
1 )] for x≤ μ1 exp((2μ3−3μ1μ2+3μ

3
1)/(6μ

3
1)), 

and Pr(St > x)≥0, otherwise. 

 

The power-law distribution is the limit distribution of a multiplicative stochastic process with 

a boundary constraint (see Sornette and Cont (1997)). If we assume that all the genes within a 

family are affected in the same (or at least a similar) way by the environment; and on the 

other hand, that in consecutive time periods, each gene family tends to expand or to shrink as 

a whole with a random factor t, then the distribution of the size of gene families in the 

complete genome is the result of many processes like Equation (1.1) occurring in parallel for 

large times t, together with the occasional introduction into the genome of a new gene family 

of size one. Equation (1.1) is equivalent to log(St) = log( )+…+ log(t ),  and the limit for 

large times t gives that log(St) becomes normal distributed with average μt = μt and 

 = 


t 

by the central limit theorem. The assumptions μ ≤0, and μ 

 < -1/2, from Huynen and van 

Nimwegen respectively, allow to avoid the condition that gene families tend to become 

infinitely large in the limit of time going to infinity leaving the process in Equation (1.1) 

without a stable limit, and allow that although the size of a gene family may fluctuate for a 

very large time, eventually each gene family tends to become extinct in the genome) , thus 

these assumptions lead to conclude that the distribution of the size of gene families in the 

complete genome is power-law distributed. The bound given in Property 3.4 can be combined 

with those by the earlier asymptotic behaviour. 

6. THE CASE OF POSITIVELY CORRELATED ENVIRONMENTAL FACTORS 

For mathematical developments, Huynen and van Nimwegen (1998) have assumed that i are 

statistically independent random multiplication environmental factors. However it is known 

that an increase in the number of genes lead to an increase in the frequency of clusters of all 

sizes, and of the number of large clusters over the number of small cluster, and since the 

genes within one family have related functions, they are clustered in the genome, and they are 

affected by the environment in the same way at different time periods. 

 

To finish, we deal with the dependence among environmental factors of the model in 

Equation (1.1) and we introduce a model for the size of gene families at any time period with 

positively correlated environmental factors that depend on random parameters.  

Let St =1(t−1 t-1 )tt ), where =i(i, i = 1, ..., t are random multiplication 

environmental factors that are correlated by the positive quadrant dependence (see Shaked 

and Shanthikumar (2007)) of the random vector (, ...,t) denoted (, ...,t) is PQD and are 
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drawn from a distribution function Fi(i), i=1,…,t. Given the random vector (
’
 ,...,t

’
), with 

independent components and the same marginal distributions than (, ...,t) being 

PQD, under the assumptions of the main result in Ortega and Alonso (2014), then 

 E[St(, ...,t)]≥E[St(
’
 ,...,t

’
)]. Using the earlier property and from Property 3.4, we get a 

similar bound for E[St(, ...,t)] in the case that the environmental factors are correlated. 

Notice that there are some non-parametrical  statistical tests to check the PQD property. 

The final conclusions can be summarized as follows. The behaviour of the random variable of 

the size of gene families at any time agrees with the scientific evidence that if a certain gene is 

likely to duplicate then all the genes of its family are likely to duplicate in the genome, and 

that the increase in gene number with increasing biological complexity involves the expansion 

of families of closely related genes. 
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