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1 INTRODUCTION

Tumor growth is a complex biological phenomenon consisting of processes on different scales.
On the cellular level – which will be referred to as the microscopic scale – one has to track the
random motion of cells, as well as the cell division and cell death. The latter are governed by
numerous intracellular processes. Furthermore, the cellular behavior is strongly coupled to the
environment and vice versa. For example, cell proliferation is determined by the local oxygen
concentration and the local cell density while hypoxia on the other hand can trigger apoptosis,
but cells also consume oxygen. This two-way feedback creates a very specific dynamics char-
acterizing the development of the tumor. A hypoxic zone develops in the middle of the tumor,
which in turn triggers endothelial cells to vascularize the tumor. This process, also known as
angiogenesis [3], ensures that the tumor’s need for oxygen and other nutrients is satisfied, which
implies that the tumor can grow further.
Smaller avascular tumors can be easily simulated on the microscopic scale using agent-based
models. We can distinguish two classes of models here. On one hand, cellular automata update
grid cells based on a number of phenomenological rules [11, 13], while on the other hand lattice-
free models typically consist of a set of ordinary differential equations (ODEs) attached to each
cell. On long time scales, we are typically interested in the tumor as a whole (macroscopic
scale). One can also choose to model the system directly on this scale using continuum models,
based on mass balance equations [15, 17, 18, 19]. Despite the fact that this approach is signifi-
cantly cheaper and easier to analyze than agent-based models, it is not feasible to use it as such
since it cannot capture discrete features as branching of a vascular network or events regulated
by intracellular concentrations. This insight gave rise to multiscale models where agent-based
models are typically used to model the cellular component, while the environment is mostly de-
scribed by a set of reaction-diffusion PDEs, corresponding to the macroscopic scale. Examples
can be found in [1, 8, 14]. For a review about the current state of the art in multiscale-modeling
of tumor growth, we refer to [5].
In this paper, we use a multiscale model where the random motion is modeled using stochas-
tic differential equations (SDEs), the intracellular variables for the cell cycle and apoptosis are
described by ODEs and the environment, consisting of diffusible components, is modeled by
PDEs. The model is a modified version of the cellular automaton model of Owen et al. [14].
The main difference is that the new model is lattice-free.
We propose a novel technique to reduce the variance on the results of the adapted multiscale
agent-based model. Due to the random motion and the influence on the environment, the simu-
lations are subject to noise. An agent-based model can be simulated via standard Monte-Carlo
algorithms. The noise can be eliminated by increasing the number of particles, at the cost of
computational efficiency. Various possible techniques for variance reduction are described in
literature, for instance antithetic variables, control variates and importance sampling. Excellent
reviews concerning variance reduction algorithms can be found in [2].
In this paper, a control process will be introduced for variance reduction. The control process
contains all details of the microscopic model except for cell births, cell deaths and VEGF se-
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cretion. The key point is to couple the simulation of the macroscopic model with this control
process.
We first give a detailed overview of the different layers of the model in Section 2. This model is
similar to the model used to describe bacterial chemotaxis [16], and reproduces the features of
the cellular automaton model proposed by Owen et al. [14]. We describe the variance reduction
algorithm in Section 3, and we illustrate the technique numerically in Section 4. Finally, the
conclusions are listed in section 5 and we elaborate on a few possibilities for future research.

2 MODEL

In this section, we describe a multiscale model for tumor growth. The microscopic model for
tumor growth is based on the ideas used to describe bacterial chemotaxis [6, 16], but our goal
was to develop a model that could reproduce the features from the cellular automaton model
proposed by Owen et al.[14] and reduce the variance on the resulting densities.
We distinguish two main components: the environment, modeled by a couple of reaction diffu-
sion equations and the agent-based model describing the individual cellular motion and internal
variables (e.g. cell cycle, apoptosis state and internal VEGF concentration) attached to each
cell.
We consider three types of cells, indexed by 1≤ p≤ P = 3: normal cells (p = 1), cancer cells
(p = 2), and endothelial cells (that build up blood vessels, p = 3). For each of these cell types,
we consider an ensemble of Ip(t) cells, and consider three state variables: position x ∈ R2, cell
cycle phase φ ∈ [0,1] and internal state z ∈Rdp , where dp denotes the dimension of the internal
state depending on the cell type. These cells evolve according to evolution laws that depend
on the concentration C(x, t) of oxygen and G(x, t) of the Vascular Endothelial Growth Factor
(which we call the environment).
The advantage of this approach is that our model has a lattice-free cellular component which
makes the computational cost only dependent on the number of cells and not on the size of the
domain. Remark that the reaction-diffusion PDEs describing the diffusible components of the
environment still need to be solved on a grid, but this cost is marginal due to the sparsity of the
involved linear systems. This implies that we can easily rescale the system to simulate a larger
tumor on a larger domain.
We now give an overview of the notations that will be used throughout the paper, after which
we describe the evolution laws for the environment, and detail the evolution laws for each of
the cell types. The cell type dependency is mainly caused by cell type dependent coefficients,
which will be discussed later on in more detail.

Notation

• The state variables at time t attached to a single cell of type p are position Xp(t), cell
cycle phase Φp(t), internal state Zp(t)

• Particle number densities are denoted by np(x, t) indexed by a suitable subscript to indi-
cate the nature of the density. To be more specific, p = 1 corresponds with normal cells,
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while p = 2 will be used to denote the cancer cell population and p = 3 for endothelial
cells. Further, nv is used to describe the vascular density.

• The evolution of the state variables is influenced in various ways by the (local) environ-
ment. The latter will be modelled by means of diffusible components G(x, t) describing
the VEGF concentration, while C(x, t) denotes the oxygen concentration.

2.1 Agent-based model
In this section we give a detailed overview of the evolution of the different state variables at-
tached to each cell of the different cellular populations.

Position. The random motion of the position of the cells is described as a biased Brownian
motion. Cells of type p move randomly with diffusion coefficient Dp, and the cells are chemo-
tactically attracted towards high concentrations with sensitivity χp. This sensitivity is especially
important for the endothelial cells, responsible

dXp(t) =
√

2DpdWt +χp∇G(Xp(t))
(

1−
np(Xp(t), t)

nmax,p

)
δ t. (1)

The cell number density np, can be computed as:

np(x, t) =
1
hp

Ip(t))

∑
i=1

Khp(x−Xi,p(t)) (2)

where Ip(t) denotes the total number of cells of type p at time t and Khp denotes a suit-
able density kernel with bandwidth hp.1 Additionally, the system is characterized by non-
conservativeness. Both cell division and cell death are obviously crucially important in a grow-
ing tumor.

Cell division is modeled by means of the following ODE:

dΦp(t)
dt

=
C(Xp(t), t)

τmin,p(Cφ ,p +C(Xp(t), t))
H(ζp(t)−ζp,max) ,

where τmin,p denotes the minimal time needed for a cell to complete one cell cycle. Remark
that τmin,p depends on the cell type. To be more specific, cancer cells are able to proceed twice
as fast as normal cells during the cell cycle in a given environment (see table 2). Naturally the
cell cycle speed depends on the local oxygen concentration C(Xp(t), t) the cell is navigating
through while evolving through the cycle. The higher the oxygen concentration, the faster the
cycle is completed, while the cell cycle is put on hold when the cell suffers from hypoxia. A
more detailed motivation can be found in [14] and its supplementary material.

1For the ease of simplicity, we adopted a simple Dirac kernel for the numerical experiment.
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Apoptosis. We introduce a sub-cellular module consistent with [14] in order to describe some
intracellular concentrations and account for apoptosis:

dZp(t)
dt

= Fp(Xp(t),Zp(t)) Zp(t) ∈ [0,1]dp,

where the right hand side depends on the cell type. For the normal tissue, the Z variable contains
two components (d1 = 2), namely the p53 concentration (Zp,1(t)) and the intracellular VEGF
concentration Zp,2(t). The former can be seen as an estimator for the number of mutations that
a cell has undergone during its lifetime. We have:

dZ1,p(t)
dt

= c1− c2
C(Xp(t), t)

Cp53 +C(Xp(t), t)
Z1,t,p,

dZ2,p(t)
dt

= c3− c4
Z1,p(t)Z2,p(t)
J5 +Z2,p(t)

+ c5
C(Xp(t), t)

CVEGF +C(Xp(t), t)
Z2,p(t).

Cells are storing VEGF (i.e. Z2,t,p) during hypoxic conditions and release it once this intracel-
lular concentration has reached a certain threshold level. Further, c1, . . .c5 and Cp53,CVEGF are
constants that can be found in table 2. The apoptosis threshold γapt can then be written as:

γapt(z) = H
(
z− zhighH(nthr−n1)− zlowH(n1−nthr)

)
,

where H indicates the Heaviside function. This definition of γapt implies that normal cells
undergo apoptosis if z has reached a certain threshold value depending on the harshness of the
environment. The threshold value is lower in case of a harsh environment, defined as n1 < nthr,
where nthr denotes a threshold value for the normal cells. Naturally tumor cells are independent
of the p53 since this mechanism to regulate the normal cell cycle doesn’t function properly
anymore in a tumor. Cancer cells are able to go into a quiescent state when expressed to hypoxic
circumstances, meaning that they don’t consume any nutrients anymore for a while. However
the duration of this quiescent state is limited, which implies that cancer cells will also undergo
apoptosis when the hypoxia holds too long. On the other hand, cancer cells have te ability to
recover quickly once there is again more oxygen available. This mechanism can be modeled by
the following equation:

dZt

dt
= AH(Cthreshold−C(Xp(t), t))︸ ︷︷ ︸

Linear increase during hypoxia

− BZtH(C(Xp(t), t)−Cthreshold)︸ ︷︷ ︸
Exponential decay if C(Xp(t),t)>Cthreshold

,

where A,B are constants. Further, the first term models the hypoxic state, i.e. the local
oxygen concentration C(Xp(t), t) drops below the threshold level Cthreshold. During this hypoxic
period, the internal variable z increases steadily. On the other hand, the second term describes
the recovery of the cancer cells if the environment isn’t hypoxic anymore, which is captured by
the exponential decay term of Zt . Cancer cells die if Zt ≥ 1, corresponding to γapt(z) = δ (z),
where δ denotes the classical Dirac delta function.
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2.2 Coarse Description
An alternative approach to model tumor growth is to describe the evolution of the populations
as a whole in a probabilistic way using partial differential equations (PDEs). In general, this
approach yields a reaction-diffusion PDE. However, in this case it is not possible to derive a
closed formulation for the reaction terms since they all depend on intracellular variables. The
macroscopic equivalent of the model without birth and death events can be found in [10], where
a continuum description was derived from a agent based stochastic description in different set-
tings:

∂tnp(x, t) = Dp∇
2np(x, t)−χp∇.

[
np(x, t)

(
1−

np(x, t))
np,max

)
∇G(x, t)

]
, (3)

where no reactions (cell divisions, cell deaths) are taken into account. They are consistent in
the sense that they satisfy the same evolution equation for the population density in the limit
for a large number of particles. Next, we introduce the following macroscopic timestepper:
np(x, tk+1) = A np(x, tk), which uses a first order forward Euler discretization to discretize the
time derivative and a second order central finite volume scheme to discretize the spatial deriva-
tives. Further details can be found in section 4.

2.3 Environment
The cellular environment consists of two diffusible components regulating the behavior of the
cells in various ways. Oxygen denoted by C, is evidently important for the cells to proceed
through the cell cycle. The local oxygen concentration is determined from the following equa-
tion:

∂tC(x, t)−DC∇
2C(x, t)︸ ︷︷ ︸

diffusion

−ψCnv(x, t)(Cblood−C(x, t))︸ ︷︷ ︸
exchange with blood

+C(x, t)
P

∑
p=1

kC,pnp(x, t)︸ ︷︷ ︸
Consumption

= 0, (4)

where DC is the diffusion coefficient, ψC denotes the permeability of the oxygen through the
vessels. Next, nv(x, t) describes the surface area occupied by the vessel at position x and it is
defined as 2πL(x, t)R(x, t), where L(x, t) and R(x, t) respectively denote the length and radius of
the vessel segment corresponding with the vessel surface area per unit tissue volume. Further,
Cblood(x, t) defines the oxygen concentration in a blood vessel located at position x. The last
term in (4) reflects the fact that all cell types consume oxygen with a cell specific rate kC,p and
hence it is evident that there is a proportionality to the population density np, defined in (2).

3 VARIANCE REDUCTION

In this section we propose a variance reduction algorithm for the tumor model described in
section 2. A straightforward agent-based simulation can deliver all the details concerning cell
divisions, cell deaths and VEGF secretion, which are obviously crucially important for the
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development of the tumor. However this approach is not suitable as such since the results
are greatly influenced by the noise originating from the random cellular motion. This noise
can reduced by antithetic variables, control variates and importance sampling but only at the
expense of extra computational cost. Here, we propose a variance reduction technique using a
control process.

Control process The control cells move in the same way as the real population cells, meaning
that they perform the same random jumps as their corresponding realistic counterpart. However
they can’t divide or die. Nor, they can’t secrete VEGF to their environment.

dXc
p(t) =

√
2DpdW c

t +χp∇G(Xc
p(t), t),

and analogous to the real system the cell number density – denoted by nc – can be calculated
as:

nc
p(x, t) =

1
hp

Ip(t)

∑
i=1

Khp(x−Xc
i,p(t)),

The fact that this system is conservative implies that it is perfectly possible to derive an evolu-
tion equation in the macroscopic limit and hence the evolution of this control process can be
calculated in both a stochastic and a deterministic way (see equations (1), (3). The resulting
densities will be denoted by nc

p and ñc
p respectively.

An improved estimator First notice that the behavior of the real cells can be described as
the superposition of a drifted Brownian motion and reactions. Since the first part is completely
equivalent to the control process, it is possible to split the population density np as:

np(x, t) = nc
p(x, t)+Rp(x, t), (5)

where Rp(xt) denotes the reaction term during the time-step and it is defined as:

Rp(x, t) =
1
h

Ip(δ t)

∑
i=1

Khp (x−Xi,p(t))H(Φi,p(t)−1)︸ ︷︷ ︸
Cell divisions

−Khp (x−Xi,p(t))(δ (γapt(Zi,p(t)))︸ ︷︷ ︸
Apoptosis

. (6)

We propose to construct a variance-reduced estimator based on the deterministic equivalent of
np

c :
n̄p(x, t) = ñc

p(x, t)+Rp(x, t)

Algorithm 1. The resulting algorithm reads as follows:

• Initialize the different cell populations with the corresponding number of agents Ip(0).
Furthermore, we also initialize the equivalent coarse description such that the cell num-
ber densities are the same: ñ(x,0) = n(x,0), where ñ denotes the coarse density.
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• Next, perform one time-step with the macroscopic simulation, resulting in ñp(x,δ t).

• In parallel, each of the cells are also simulated over a time-step, which yields the corre-
sponding cell number densities np(x,δ t) where the cell divisions, apoptosis and VEGF
secretion events are taken into account.

• The improved estimate for the cell number densities will be denoted by n̄p(x,δ t) and can
be derived as:

n̄p(x,δ t) = ñp(x,δ t)+Rp(x,δ t), (7)

This procedure will be repeated after reinitializing the control density ñp(x, t) = n̄(x, t).
The importance of reinitialization can be illustrated by looking into the following hypothetical
situation. Suppose the ith cell of type p divides at time t = t?, and hence cell Ip + 1 is born.
At time t > t?, this newborn cell has moved randomly through the domain. Apart from this
random motion, it also has influenced the environment along its track. Those events cannot be
taken into account without reinitialization.

4 NUMERICAL EXPERIMENTS

In this section, we will illustrate the performance of the variance algorithm described above
with a numerical experiment. The cells are living on a 50× 50 square grid. The cancer cells
are initially uniformly distributed on the square [1.2×10−3,2×10−3]2 in the middle of the do-
main, while the normal tissue is uniformly distributed over the whole domain.
Further, we initialize the environment as follows: two straight vessels at x= 20∆x and x= 40∆x,
corresponding to a moderate vascular density of 50cm2/cm3 (see [14]). The latter results in av-
erage oxygen concentrations, meaning that cells are proceeding through the cell cycle at a speed
which is slightly higher than half maximal. More details concerning realistic vascular densities
and oxygen concentrations can be found in the supplementary material provided with [14].
In the first experiment, we assume a normal tissue containing 2500 cells and a small tumor
of 200 cells (weighted with a factor 0.25). The domain is discretized with a gridspace of
∆x = ∆y = 4×10−3cm. We perform 2000 timesteps with a timestep δ t = 1800s, which is
consistent with [14]. Since we are investigating the hypothetical situation of a static vascula-
ture, cell death for cancer cells has been switched off. Otherwise, all cells would die because of
the hypoxic environment.

Evolution of populations In figure 1 we show the evolution of normal and cancer tissue,
along with the oxygen concentration at time t = 1.8×104s One can observe that the tumor
immediately influences the normal tissue in the sense that most of normal cells die in this
cancerous region. In the meantime tumor starts to grow along the vessel until the tissue is
locally saturated, meaning that ∑

P
p=1 np(x, t)> np,max. The high birth rate can be explained by

the high oxygen concentration. Besides, the cells also diffuse in the other directions due to
the random Brownian motion. This evolution can also be seen as an illustration of the “go or
grow”-theorem, which is identified as an important characteristic of the aggressiveness of the
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tumor [7, 9].
The results shown after 2000 timesteps are shown in the second row of figure 1. The tumor made
a hole in the normal tissue while the cancer cells divided along the second vessel, which makes
the correlation with the oxygen concentration –shown in the third column– clear. Eventually,
almost the the whole normal tissue died in favor of the tumor, while the tissue is fully saturated
along the vessels.

0.5

0.5

〈n̄1(x, t = 1.8 × 104)〉

0

0.5

0.5

0.5

n̄2(x, t = 1.8 × 104)〉

0

0.5

1

1.5

2

0.5

0.5

〈(C(x, t = 1.8 × 104))〉

5

10

15

Figure 1: Evolution of mean cellular densities (normal tissue:left, cancer cell density: middle panel)
and mean oxygen concentration (right) calculated using variance reduction. In the figure the results at
t = 1.8×104s) are shown)

Evolution of the variance. In figure 2, we compare the variance on the mean cancer cell
density with (n̄2) and without n2 variance reduction at several time slots. In the beginning,
cells only divide along the leftmost vessel until the environment is locally saturated (see also
figure 1) after which the locations of new divisions move along the vessel. The latter is directly
correlated to the peaks in the variance. At time t = 3.6×106s, the maximal density along the
vessels has been reached and hence the peaks are eliminated. Without variance reduction, the
variance is lower but not negligible, because of the noise due to random motion. In contrast,
after applying variance reduction the variance is significantly lower along both vessels. Remark
that the variance is slightly higher next too the vessel. This phenomenon can be explained since
there is still enough space for cells to divide here. The asymmetry between the left and the right
vessel is due to the initial condition. To be more specific the tumor was initially placed near the
leftmost vessel, implying that there are no birth events here because of the volume restriction.

5 CONCLUSIONS AND OUTLOOK

We developed a novel variance reduction technique specifically suited to reduce the noise of
agent-based models with birth and death events, as it is the case in our model for tumor growth.
We proved that the algorithm outlined in section 3 gave rise to an unbiased estimator and the
variance is determined by the births and deaths. The performance was illustrated numerically
and the evolution and we analyzed the evolution of the variance on the mean cancer cell density.
The proposed algorithm is based on the idea of control variates, since the evolution of the system
without reactions is known deterministically via the macroscopic equation (3). A valuable
extension would be to combine this algorithm with other variance reduction techniques such
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Figure 2: Evolution of variance on mean cancer cell density with (second row, corresponding to
Var(〈n̄2〉))) and without variance reduction (first row, corresponding to Var(〈n2〉)) )

as importance sampling. Further, it also would be interesting to test the performance in more
realistic cases where the vasculature is developing according to the needs of the tumor. The
evolution of the vascular network will have implications on the diffusible fields and therefore
on the behavior of the different cell populations. Apart from that, we will also extend our model
with important features such as haptotaxis in response to the extra-cellular matrix and include a
more sophisticated model for stemcellness [4, 12] since it was identified as one of the hallmarks
of cancer [8].

Parameter Oxygen units
D 2.4167×10−5 cm2/s
ψ 0.1 cm/s
δ 0 s−1

knormal −0.2167 s−1

kcancer −0.2167 s−1

Table 1: Parameter values reaction diffusion equations
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Parameter Normal Population Cancer Population Endothelial cells units
Dp 0 8.33×10−11 1.66×10−10 cm2/s−1

χp 0.0 0.0 3.333×10−6 cm2/s/nM
np,max 1 1 2 # particles

d 2 1 dimensionless
ζp,max 4 ∞ 4 times
Cφ ,p 3 1.4 mmHg
τp,min 1.8×105 9.6×104 s
zhigh 0.8 dimensionless
zlow 0.08 dimensionless
nthr 0.75 dimensionless
c1 3.3333×10−5 3.3333×10−5 s−1

c2 1.6667×10−4 1.6667×10−4 s−1

c3 3.3333×10−5 3.3333×10−5 s−1

c4 3.3333×10−5 3.3333×10−5 s−1

c5 1.6667×10−4 1.6667×10−4 s−1

A 1 s−1

B 4.167e−5 s−1

Table 2: Parameter values related to the populations.
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