Mesh Refinement for Quasilinear Two-Grid Discontinuous Galerkin Finite Element Methods with Polygonal Meshes

Scott Congreve*

 * Fakultät für Mathematik Universität Wien
Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria.
email: scott.congreve@univie.ac.at - web page: http://mathematik.univie.ac.at

ABSTRACT

In this talk, we study mesh refinement for the two-grid discontinous Galerkin finite element method for strongly monotone quasilinear PDEs using general polygonal elements. Two-grid methods, cf. [1, 5, 6], first approximate an underlying nonlinear problem on a coarse finite element partition of the computational domain and then on the basis of this coarse grid approximation compute a linearized variant of the discrete problem on a finer mesh. It is necessary to design the two meshes such that the linear solve is performed on a finer mesh. In previous articles [3, 4] we have studied the *hp*-version adaptive mesh refinement of both coarse and fine meshes for discontinuous Galerkin two-grid methods for strongly monotone quasilinear PDEs based on the *a posteriori* error bound.

Recent developments [2] have studied the use of general polygonal and polyhedral elements for the standard discontinuous Galerkin finite element method. One method of generating meshes of general polygonal elements is to agglomerate a set of standard elements into a polygonal element. Using this agglomeration technique it is possible to create a fine mesh of general simplex elements and a coarse mesh generated by agglomerating the fine mesh elements. Using these meshes it is possible to run a two-grid method with a given mesh of simplex elements and an automatically generated mesh of general agglomerated polygonal elements. In this talk we extend the work in our existing two-grid method with an agglomerated coarse mesh and discuss an automatic mesh refinement algorithm for the two meshes.

REFERENCES

- C. Bi and V. Ginting. Two-grid discontinuous Galerkin method for quasi-linear elliptic problems. J. Sci. Comput., 49(3):311–331, 2011.
- [2] A. Cangiani, E. H. Georgoulis, and P. Houston. hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci., 24(10):2009–2041, 2014.
- [3] S. Congreve, P. Houston, and T. P. Wihler. Two-grid hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic PDEs. J. Sci. Comput., 55(2):471–497, 2013.
- [4] S. Congreve and P. Houston. Two-grid hp-version discontinuous Galerkin finite element methods for quasi-Newtonian flows. Int. J. Numer. Anal. Model., 11(3):496–524, 2014.
- [5] J. Xu. A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal., 29:303–319, 1992.
- [6] J. Xu. A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput., 15 (1):231–237, 1994.