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ABSTRACT

Numerical  methods  for  wave  propagation  problems  typically  leverage  the  finite  domain-of-
dependence of the solution operator to utilize efficient explicit time-stepping schemes, often based on
standard  linear  multistep  or  Runge-Kutta  formulas.  However,  for  systems  with  multiple  wave
families or problems in multiple media it is possible that both fast and slow waves will be present [1].
Basic examples include compressible flows at low Mach number [2] or the shallow water equations
[3]. Various methods have been proposed to treat such problems, but in general the use of standard
time-stepping schemes will require either small steps dictated by the fast waves or implicit solves
with highly nonsymmetric matrices. In this talk we consider a different approach based on stable,
explicit,  integral-based  time  stepping  formulas.  Examples  of  the  use  of  such formulas  to  derive
unconditionally stable explicit time-stepping methods for the scalar wave equation [4-6] and linear
acoustics [7-8] have appeared. Here we develop extensions of these methods to account for wave
generation by coupling with possibly nonlinear slow waves. 
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