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Abstract. Using ParFlow-WRF, a fully-coupled land-atmosphere model incorporating a 
variably saturated subsurface flow model, we evaluate responses in land-atmosphere 
feedbacks to heterogeneity in subsurface properties.  To accomplish this, we first generate an 
idealized domain with heterogeneous, subsurface properties using correlated, Gaussian 
random fields.  We then induce heavy rainfall using a moisture tendency over a straight line 
in the center of a fifteen by fifteen kilometer model grid within the atmospheric portion of the 
fully-coupled PF.WRF model grid domain to create changes in subsurface moisture and 
overland flow.  We complete ensembles of model runs, each with different random seeds, and 
monitor the of surface runoff, saturation, and land-atmosphere feedbacks at and near the 
ground surface.  Finally, using conditional Monte Carlo simulations, we also incorporate 
subsurface data to evaluate the reduction of uncertainty in soil moisture and subsequent 
impacts on land-atmosphere feedbacks.  

 
 
1 INTRODUCTION 

Analyses and predictions involving the subsurface are challenging because it is not 
possible to develop a complete picture of subsurface heterogeneity with field data.  
Uncertainties associated with a heterogeneous subsurface can be reduced simply by adding 
more field data, but the cost of a dataset increases with each new data point.  It then becomes 
important to carefully quantify if and how much data are needed to reduce uncertainty in the 
distribution of subsurface properties and the propagation of this uncertainty throughout the 
hydrologic cycle.  Here, we use a fully-coupled subsurface-land surface-atmosphere model to 
evaluate responses in land-atmosphere feedbacks to varying heterogeneity in hydraulic 
conductivity in the subsurface to identify and reduce uncertainty in model predictions. 

2 MODEL DOMAIN 

The land-surface/subsurface (ParFlow) and atmospheric (WRF) portions of the PF.WRF 
model domain are set up separately.  Horizontal discretization is the same for both, a 15 by 15 
kilometer grid with 1000-meter resolution. 

2.1 ParFlow domain 

The ParFlow domain was constructed with a vertical resolution of 0.5 meters, a thickness 
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of 5 meters, and a 0.001 slope toward the west.  The heterogeneous subsurface was produced 
using the turning bands algorithm1.  The stochastic random field was constructed based on a 
mean hydraulic conductivity value of 0.01 m/s, horizontal correlation length of 5,000 meters, 
and vertical correlation length of 2 meters. 

The boundary conditions for the ParFlow domain were set such that water enters the 
system only via rainfall, and leaves the system only via overland flow or evapotranspiration.  
This is accomplished using a Neumann-type (no flow) boundary condition for the lateral and 
bottom boundaries, and an overland flow boundary condition2 for the land surface.  Fluxes at 
and across the land surface are passed back and forth between ParFlow and the atmospheric 
portion of the model.  The land surface and subsurface are forced by the coupled atmospheric 
model. 

2.2 WRF domain 

The atmospheric portion of the domain is discretized in terms of 25 transient pressure 
levels defined fractionally from the land surface to the top of the atmosphere at 14,960 Pa.  
This corresponds to a nominal vertical resolution of approximately 200 m near the surface and 
800 m near the top of the atmosphere, which is at approximately 13,800 meters above mean 
sea level. 

Periodic lateral boundary conditions3 were imposed in all directions surrounding the 
domain.  The upper boundary is the top of the atmosphere.  The atmosphere is forced using 
idealized summer meteorological data, and precipitation induced by introducing antecedent 
moisture over pressure levels 8 through 17 (from the surface) across a straight north to south 
line in the center of the atmospheric domain during the first half of the 48-hour simulation. 

 

 

Figure 1: Hydraulic conductivity random fields were produced using the turning bands random field 
generator.  Actual conditions are represented by the field at left. 

3 COMPUTATIONAL APPROACH  

ParFlow is a three-dimensional variably-saturated watershed model that simulates both 
subsurface and surface flow using an overland flow boundary condition2,4,5.  It has been 
coupled to the Weather Research and Forcasting model (WRF)3 passing fluxes through the 
land surface model Noah6 resulting in a complete model of the hydrologic cycle7. 

We used ParFlow-WRF (PF.WRF) to run a ten-realization Monte Carlo simulation with 
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varying yet statistically equivalent subsurface heterogeneity.  We also ran one additional 
simulation, the output of which represents the “actual” conditions of the hypothetical basin.  
We introduced antecedent moisture into the atmospheric domain and monitored the response 
at the land surface in terms of latent heat flux, saturation and wind velocity, and compared the 
results of the realizations with the “actual” conditions.  The hydraulic conductivity fields for 
the actual basin and two example realizations are shown in Figure 1. 

By generating random hydraulic conductivity fields over multiple realizations, each with a 
different random seed, we show a strong effect by varying subsurface heterogeneity on 
saturation, latent heat flux and wind speeds.  This indicates that uncertainty in the subsurface 
will propagate through land-atmosphere feedbacks, and could have a profound effect on wind 
predictions used for applications such as wind energy forecasts. 

In order to reduce the uncertainty of the heterogeneous subsurface, we seek to condition 
the hydraulic conductivity random field with data points from the actual hypothetical basin to 
form a narrow statistical envelope that captures the actual behavior exhibited in latent heat 
flux, saturation and wind speed within a 95 percent confidence interval. 

 

 
Figure 2: Observation points are shown in red—Point 1 at left, Point 7 at center—and conditioning points in 

black. 

4 RESULTS AND DISCUSSION 

We ran Monte Carlo simulations using hydraulic conductivity random fields without 
conditioning, with 18 conditioning points, 75 conditioning points, 144 conditioning points and 
320 conditioning points.  For this paper, we will discuss the cases without conditioning and 
with 320 conditioning points, shown on Figure 2.  For our comparisons, we will look at two 
locations in the hypothetical basin, also shown on Figure 2—x = 1000 m, y = 7000 m, Point 1 
near the edge of the domain, at the leading end of the runoff route, and away from the location 
of maximum rainfall, and x = 7000 m, y = 7000 m, Point 7 in the middle of the domain and in 
the area of maximum rainfall.  The origin in this coordinate system is the southwest corner.  
We will concentrate on the second 24-hour period in the simulation, the recession period after 
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the moisture tendency has been removed.  
 

 

Figure 3: Surface saturation immediately following 24 hours of rainfall.  Actual conditions shown on the left. 

4.1 Unconditional Simulations 

Figure 3 shows the variation in surface saturation and runoff routing between the actual 
conditions and two realizations at the end of the simulated rainstorm for the unconditional 
case.  These plots are representative of the type of variation exhibited between realizations in 
the unconditional Monte Carlo simulation.  Figure 4 shows the ensemble average saturation 
for the 10 realizations in the unconditional Monte Carlo simulation plotted with its 95 percent 
confidence interval envelope and the actual saturation at Point 1and Point 7.  The ensemble 
average saturation increases during the rain period with a wide envelope encompassing 
saturations between 0 and 1.  Point 7 becomes fully saturated during the simulation for all ten 
realizations, and the envelope is much smaller than at Point 1 during the recession period 
because all ten realizations begin the recession with nearly the same saturation value.   

Figure 5 shows the actual and unconditional ensemble average latent heat flux with 95 
percent confidence envelope at Point 1 and Point 7 during the recession period.  Latent heat 
flux exhibits behavior similar to saturation.  The 95 percent confidence envelope for latent 
heat flux at Point 1 is also wide.  Latent heat flux at Point 7, like saturation, exhibits a 
narrower envelope than at Point 1. 

Vertical wind speed exhibits more variation through time than saturation and latent heat 
flux, resulting in a noisy signal, as shown in Figure 6.  The unconditional ensemble average 
appears to capture the diurnal cycle with higher wind speeds and a higher variance in wind 
speed during the day. 
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Figure 4: Unconditional average and actual saturation at Point 1 and Point 7 during the recession period are 
shown with the unconditional 95% confidence interval. 

 

Figure 5: Unconditional average and actual latent heat flux at Point 1 and Point 7 during the recession period are 
shown with the unconditional 95% confidence interval. 

 

Figure 6: Unconditional average and actual vertical wind speed (W) at Point 1 and Point 7 during the recession 
period are shown with the unconditional 95% confidence interval. 
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Figure 7: Conditioned average and actual saturation at Point 1 and Point 7 during the recession period are shown 

with the conditioned 95% confidence interval.  Unconditional average and envelope are also shown. 

 
Figure 8: Conditioned average and actual latent heat flux at Point 1 and Point 7 during the recession period are 

shown with the conditioned 95% confidence interval.  Unconditional average and envelope are also shown. 

 
Figure 9: Conditioned average and actual vertical wind speed (W) at Point 1 and Point 7 during the recession 

period are shown with the conditioned 95% confidence interval.  Unconditional average and envelope are also 
shown. 
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4.2 Conditional Simulations 

Figures 7, 8 and 9 show the ensemble average saturation, latent heat flux and vertical wind 
speed, respectively, plotted with their 95 percent confidence envelopes and the actual values 
for each variable for the conditioned simulation.  Also shown are the unconditional plots, for 
comparison.  Using 320 conditioning points over the subsurface domain, there is a clear 
improvement in the 95 percent confidence envelope at Point 1 and Point 7 for both saturation 
and latent heat flux.  The actual saturation at Point 1 remains at approximately 0.25 
throughout the simulation.  While the unconditioned 95 percent confidence interval ranging 
from 0 to 1 naturally includes the actual values, the conditioned envelope provides a 
meaningful estimate of the uncertainty.  The ensemble averages for saturation and latent heat 
are in closer agreement with the actual values at both observation points in the conditioned 
case, compared with the unconditioned case, corresponding to nearly an order of magnitude 
decrease in root mean square error (RMSE) at Point 1, and a 50 percent decrease in RMSE at 
Point 7 for saturation.  The decrease in RMSE for latent heat flux at Point 1 is approximately 
five-fold, and decreases by 0.8 W/m2 at Point 7. 

Ensemble averages for vertical wind speeds, as shown in Figure 9, appear to attenuate the 
sharp peaks that appear in the actual values for vertical winds for both the unconditional and 
the conditioned cases.  It is possible that vertical winds may average to zero over a large 
number of realizations.  If that is the case, then pointwise one-dimensional observations may 
not be appropriate for this analysis.  A domain-averaged bulk approach may provide a more 
effective tool for analyzing the influence of conditioning in the heterogeneous subsurface on 
atmospheric processes. 

5 CONCLUSIONS 

 The rainfall area (Point 7) represents a highly controlled portion of the experiment.  
Variation in saturation between realizations is low in this area.  Since latent heat flux 
is strongly correlated with saturation, its variation is also low in this area. 

 Point 1, furthest from the rainfall, shows higher variation in saturation and latent heat 
flux.  Conditioning of the subsurface heterogeneity in this area shows a larger effect 
on the 95 percent confidence envelope than at Point 7.  The corresponding reduction in 
RMSE is larger at Point 1 when conditioning is applied. 

 We can conclude that conditioning of the subsurface will have a strong influence on 
reducing uncertainties in variables that are directly related to subsurface properties, 
such as saturation and latent heat flux (as shown here), as well as runoff routing and 
evapotranspiration. 

 It is less clear what influence subsurface conditioning has on atmospheric processes 
from the data analysis described here. Winds are a function of circulation across the 
entire domain and it is likely that the effect of conditioning does not manifest itself in 
a pointwise fashion as it does for saturation and latent heat flux.  The variances in 
wind speeds that appear between realizations clearly indicate that the wind speeds are 
influenced by variation in the heterogeneous subsurface, since the subsurface is the 
only input variable that changes between realizations.  As such it may be better to look 
at circulation in bulk over the entire domain.  This could be accomplished using a 
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domain-averaged magnitude of the wind velocity instead of vertical wind speed at a 
point.   
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