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Summary. We present a model for capillary entry pressure and capillary pressure curve
computations in mixed-wet 2D pore spaces from rock images. The model determines
two curves defined by the loci of centre positions of two circles moving around the pore
boundary in opposite directions. All relevant arc menisci are associated with intersections
of these curves. At lines separating pore surfaces with different wettability, the circles
rotate to permit pinned contact lines with associated hinging interfaces. Arc menisci and
adjoining pore boundary segments are tracked to form boundaries of different regions.
All possible combinations of these regions are generated and their associated entry pres-
sure radii for invasion is computed by the Mayer & Stowe – Princen method, including
thermodynamically consistent treatment of partial and complete displacement of oil lay-
ers forming at negative capillary pressure. It is demonstrated that the model captures
well-known features of capillary behaviour at mixed-wet conditions. In particular, entry
pressure radius, oil layer existence, fluid configurations and capillary pressure curves are
strongly affected by the reversal point after drainage.

1 INTRODUCTION

Capillary pressure and wettability are key properties in the prediction of multiphase
flow processes in porous rocks. Fluid distributions and capillary pressure curves are
frequently calculated by pore-scale models, such as network models with idealized pore
geometry [11], and more recently, by pore-morphology [3], level set [4] and lattice Boltz-
mann [5] models in realistic porous media. However, with these approaches it is difficult to
incorporate a detailed wettability characterisation and to obtain accurate representations
of the associated fluid configurations in the real pore geometry.
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The network model approach utilizes analytical capillary entry pressure solutions for
piston-like invasion in straight idealised tubes, which are derived from the Mayer & Stowe
– Princen (MS-P) method [6, 9]. In this method, the required work is balanced with the
change in interfacial free energy for a virtual displacement of the invading main terminal
meniscus (MTM) in the direction along the tube length. For a system of non-wetting and
wetting phases, e.g., oil (o) and water (w), this balance may be written as

1/r = (dAos cos θ + dAow)/dVo, (1)

where dAos and dAow are the changes in oil-solid and oil-water interfacial areas, respec-
tively, dVo is the change in oil volume, and θ is the contact angle. The radius of curvature,
r, of an arc meniscus (AM) located in the tube cross-section sufficiently far away from
the MTM is given by the Laplace formula in two dimensions

r = σ/pc, (2)

where σ is interfacial tension. Since capillary pressure pc is assumed to be uniform ev-
erywhere, the entry pressure for a displacement of the MTM is related to the AM radius
by Eq. (2). The MS-P method has been used to derive two- and three-phase capillary
entry pressures in uniformly- and mixed-wet idealised pore geometries [9, 6, 7, 8]. The
approach has recently been extended to allow computations in arbitrary, yet relatively
convex, polygonal pore shapes by making use of the relation between the entry fluid con-
figuration and the medial axis of the pore space [2, 10]. However, this latter extension is
currently restricted to two-phase systems under conditions with zero contact angles.

We have developed a method to compute capillary entry pressures and fluid configura-
tions in arbitrary, generally non-convex, uniformly-wet pore spaces from 2D rock images
[1]. The present paper describes the extension of the model to mixed-wet conditions.
This includes a method for computing thermodynamically consistent entry pressures for
partial and complete oil layer displacements at negative capillary pressure [7].

2 PORE BOUNDARY AND WETTABILITY CHARACTERISATION

The novel model requires as input a 2D binary image of a simply connected pore space
geometry. Our approach differs from [2] in that we calculate smooth pore boundaries from
the image representations rather than constructing polygons with sharp corners. The main
advantage of this approach is the possibility to compute curvature of the pore walls, which
can be included in the augmented Young-Laplace equation to determine accurately the
collapse of thin wetting films along the pore boundary during primary drainage [12]. This,
in turn, could give an improved wettability characterisation with many adjacent pore wall
segments of collapsed and intact films that require different advancing contact angles in
subsequent imbibition processes.

We have implemented two options for obtaining smooth boundaries; a Euclidean path
method which was adopted in [1], and a least squares method which is utilised in this
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Figure 1: (a) Definition of the orientation angles αi at pore boundary points bi. The relation between
the counter-clockwise and clockwise drainage curve points, vcc

i and vc
i , and the parameters θ, r and bi are

shown for uniform water-wet conditions. (b) Numerical example in a Bentheimer sandstone pore of the
computation of vc (green curve) and vcc (red curve) for mixed-wet conditions. Oil-wet pore boundary
segments Tj(θo) (bold blue lines), water-wet pore boundary segments Tj(θw) (thin blue lines), contact
lines Pj (�), Qj (�), pinning points Hj (◦), relevant AMs Mj (black solid curves), relevant drainage
curve intersections Cj (�), and all CR, BR and LR regions are shown. The contact angles used are
θo = 160◦ and θw = 20◦.

work. The computed smooth boundary of the pore space Ω is ordered in counter-clockwise
direction and given by the set of points {bi}N

i=1 = Γ ⊂ R
2. For each bi, we calculate an

orientation angle αi = α(bi) which is directed counter-clockwise from a line parallel with
the x-axis, through the pore exterior (the solid phase), to the tangent of the pore boundary
at bi, as shown in Figure 1(a). The pore boundary is also organised in segments {Tj}Ns

j=1

that are associated with uniform contact angles {θj}Ns
j=1. The endpoint of each segment

equals the starting point of the next segment, i.e., Tj ∩ Tj+1 = Hj , where Hj are pinning
points on the pore boundary where AMs may hinge during imbibition.

In this work mixed-wet conditions develop according to the scenario described in [12],
by running our model for uniform wetting conditions [1] to an arbitrary interfacial curva-
ture 1/rpd which represents the end of primary drainage and an initial water saturation
for imbibition. The segments Tj are assumed to connect adjoining contact lines of the
AMs occurring at rpd, and we restrict the present study to allow only two different contact
angles along the pore boundary. If a segment Tj is in contact with oil, θj = θo, and if Tj

is in contact with water, θj = θw.

3 MODEL DESCRIPTION

The method for computing entry pressure radii and associated fluid configurations
takes as input an arbitrarily chosen radius r ∈ [−rpd, rpd], which is related to capillary
pressure by Eq. (2). The required steps of the algorithm for each r is described next.
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3.1 Calculation of mixed-wet drainage curves

For uniform water-wet conditions, a circle with radius r is moved along the pore bound-
ary such that its circular arc defines the given contact angle θ at each boundary point b.
The circle movement is performed two times; in counter-clockwise and clockwise direc-
tions. In both cases the contact angle is defined at the front of the circle, see Figure 1(a).
The resulting loci of circle centres, vcc and vc, constitute two closed curves that are re-
ferred to as the counter-clockwise and clockwise drainage curves. These are named after
the concept drainage axis introduced by Lindquist [2]. To facilitate the calculation of
these drainage curves at both positive and negative capillary pressures, we introduce the
parameters r̄ and θ̄γ , γ = o, w which are defined as

r̄ =

{
r if r > 0,

−r if r < 0,
and θ̄γ =

{
θγ if r > 0,

π − θγ if r < 0.
(3)

Then the drainage curves are calculated as follows for all bi = (xi, yi) ∈ Tj \ {Hj, Hj+1}:

vcc
i = (xi − r̄ sin(αi + θ̄j), yi + r̄ cos(αi + θ̄j)),

vc
i = (xi − r̄ sin(αi − θ̄j), yi + r̄ cos(αi − θ̄j)),

(4)

where θ̄j = θ̄o or θ̄j = θ̄w. Note that these curves are generally different when θ̄j �= 0,
but coincident when θ̄j = 0. If the boundary point coincide with a pinning point, i.e.,
bi = Hj = Tj ∩Tj+1, the drainage curves are constructed from Eq. (4) with θ̄j replaced by
a sequence of m equally spaced values θ̄H,j = {θ̄j = θ̄h,1, . . . , θ̄h,m = θ̄j+1}. Thus, the circle
with radius r̄ is fixed at position bi while it rotates from angle θ̄h,1 until θ̄h,m is reached.
The parameters θ̄h represent hinging angles which are required to model cases where
contact lines are fixed at pinning points while the corresponding AMs hinge as capillary
pressure changes [6]. Figure 2 illustrates the construction of these drainage curves on a
flat surface with heterogeneous wettability for r > 0 and r < 0. The intersections of the
two drainage curves constitute all the possible centre positions of circles whose arcs may
correspond to physically allowed AMs for the given radius r.

3.2 Drainage curve intersections, contact lines and arc menisci

Each intersection C of the drainage curves is determined and associated with a contact
line pair that coincide with boundary points b [1]. The so-called counter-clockwise contact
line, P ∈ Γ, is associated with vcc, and similarly, the clockwise contact line, Q ∈ Γ, is
associated with vc. The arc M , and its length LM , of an intersection C is determined an-
alytically by a set of generated arc points ordered from P to Q. For each M we also define
pore boundary segments S ∈ Γ which consists of the points tracked in counter-clockwise
direction along the pore boundary from P to Q, i.e., S = {P = bk, bk+1, . . . , bl−1, bl = Q}.
A corresponding segment which excludes the contact lines is defined as Ŝ = S \ {P, Q}.
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Figure 2: Illustration of the drainage curves vcc and vc on a flat surface with heterogeneous wettability
for r > 0 (left) and r < 0 (right).

A set of criteria is implemented to identify the intersection points that correspond to
geometrically meaningful AMs. For uniformly-wet conditions, this amounts in identifying
all AMs pointing toward pore space constrictions [1]. For mixed-wet conditions, additional
AMs pointing out of constrictions are geometrically allowed if the contact lines are pinned,
i.e., Q = Hk = Tk ∩ Tk+1 and P = Hj = Tj ∩ Tj+1, and the contact angles satisfy θ̄j >
θ̄j+1, θ̄k+1 > θ̄k. The set of allowed AMs is denoted M = MT ∪MH , where MT represents
AMs with contact lines located on uniformly-wet surfaces, and MH represents AMs with
contact lines located in pinning points. Figure 1(b) shows a rather simple Bentheimer
sandstone pore with all allowed AMs for a radius r < 0 at mixed-wet conditions.

3.3 Extraction of geometrical regions

Geometrical regions in the pore space that correspond to fluid configurations are iden-
tified next. The closed boundary of such regions is formed by a sequence with alternating
pore boundary segments and AMs. The algorithm makes use of the following definitions.

Definition 1. A pore boundary segment, Si,j ⊂ Γ, is defined by a sequence of pore
boundary points ordered in counter-clockwise direction, which connects two adjoining
AMs Mi and Mj and includes their contact lines as segment endpoints. Its length, LS,i,j,
is the sum of the distances between all consecutive boundary points.

Definition 2. Two AMs, Mi and Mj , are opposite if Ŝi ∪ Sj = Γ.

Definition 3. A corner region, CR, is a geometrical region defined for r < 0 with a
boundary composed of segments Tj(θw) only and AMs Mj ∈ MH of which none are
opposite.

Definition 4. A bulk region, BR, is a geometrical region defined for all r with a boundary
composed of segments Si,j and AMs Mj ∈ M. Opposite AMs can only exist for r < 0
and must hinge, i.e., Mj ∈ MH, and also be part of the boundary of CR regions.
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Definition 5. A layer region, LR, is a geometrical region defined for all r with a boundary
composed of segments Si,j and at least two opposite AMs, Mi, Mj ∈ M, of which at least
one must be a member of MT .

A pore boundary tracking procedure is utilised to determine the different geometrical
regions and closed boundaries [1]. The geometrical regions are classified according to
Definitions 3–5 subsequently. Figure 1(b) indicates the different geometrical regions in a
Bentheimer sandstone pore space for r < 0 at mixed-wet conditions.

3.4 Entry pressure radii for merged and individual regions

The valid fluid configuration change is associated with the most favourable entry pres-
sure radius among all geometrically possible displacement scenarios [8]. Therefore, all
geometrical regions existing at r are combined in all possible ways and evaluated by the
MS-P method to determine the thermodynamically valid configuration. The considered
invading fluid is oil for r > 0 and water for r < 0. All CR regions are assumed to be
occupied by water. Invaded regions are organized in the set FR. Initially FR = ∅ for
r > 0, and FR = {CRj}NCR

j=1 for r < 0, where NCR is the number of existing CR regions.
All regions which have not been invaded yet are evaluated to determine the favourable

configuration change. This includes individual BR regions and combinations of BR and
LR regions, which form larger merged regions Ki. Merged regions are determined by
generating all possible combinations KLR,i of the LR regions and identifying the neigh-
bouring BR regions for each combination, which together form larger regions Ki. If all
the neighbouring regions of combination KLR,i is invaded, Ki = KLR,i. The set M[Ki]
represents all AMs that are part of Ki, excluding AMs separating internal neighbouring
regions in Ki. The set of all segments Sj,k that are part of Ki is given by S[Ki]. For
each Ki, we determine MF,i, representing AMs that separate Ki from already invaded
neighbouring regions, and ME,i = M[Ki]\MF,i, representing AMs that separate Ki from
other regions which have not been invaded yet. The MS-P equation, Eq. (1) can now be
expressed for Ki as

1

ri
= Fi(r) =

⎧⎨⎩
(Los cos θ)i−LF

ow,i+LE
ow,i

Ao,i
, if r > 0,

(Los cos θ)i+LF
ow,i−LE

ow,i

Ao,i
, if r < 0,

(5)

where
(Los cos θ)i =

∑
Sj,k∈S[Ki]

LS,j,k cos θ(Sj,k),

LF
ow,i =

∑
Mj∈MF,i

LM,j, LE
ow,i =

∑
Mj∈ME,i

LM,j .
(6)

Here, θ(Sj,k) = θo always because θ(Sj,k) = θw only occurs in water-filled CR regions.
The area Ao,i is easily calculated by identifying the boundary of the merged region, which
consists of segments Sj,k ∈ S[Ki] and AMs Mj ∈ ME,i ∪ MF,i. The AM lengths are
splitted into LE

ow,i and LF
ow,i to model partial oil layer displacements at r < 0 [8] and

partial water layer displacements at r > 0 [1].
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The right-hand side of Eq. (5) is more easily determined for individual regions. In this
case, Ki represents a BR region, and for r > 0, MF,i = ∅ and ME,i = M[Ki], whereas
for r < 0, MF,i includes the AMs in MH that separate the BR region from CR regions
only.

4 COMPUTATIONAL PROCEDURE

Entry radii rentry are calculated by the iterative procedure

1/riter+1 =

{
min{Fi(riter), i = 1, . . . , Ncomb} if r > 0,

max{Fi(riter), i = 1, . . . , Ncomb} if r < 0,
(7)

where Ncomb is the number of configuration candidates. The formula 1/r = L cos θo/A is
assumed for the initial value, where A and L are pore space area and perimeter. All steps
in Section 3 are repeated for each radius. The converged value rentry is translated from
pixels to physical units afterwards for capillary entry pressure estimation by Eq. (2).

Interfacial curvature – saturation curves are computed by taking as input a sequence
of radii r ∈ [−rpd, rpd]. For each radius, all steps in Section 3 are repeated and the most
favourable displacement is determined by

F ∗(r) =

{
min{Fi(r) : 1/r ≥ Fi(r), i = 1, . . . , Ncomb} if r > 0,

max{Fi(r) : 1/r ≤ Fi(r), i = 1, . . . , Ncomb} if r < 0.
(8)

If the right-hand side is empty, the algorithm proceeds with the next radius since no region
combination has reached the required entry condition. However, if F ∗(r) is determined,
an entry condition is reached, and the associated merged or individual region is invaded
and added to the set of invaded regions FR. Then the fluid configuration in the pore
space has changed, and new region combinations are generated by taking into account
all previously invaded regions at the current radius. If a new F ∗(r) is determined from
Eq. (8) based on the new combinations, the corresponding regions are invaded and added
to FR. The loop continues until the right-hand side of Eq. (8) is empty, and the algorithm
proceeds with the next radius.

5 NUMERICAL RESULTS

Mixed-wet entry radii and interfacial curvature – saturation curves are computed by
the novel model in a set of individual Bentheimer sandstone pore spaces that are extracted
from a 2D SEM image taken at 1.28μm resolution. Entry radii are computed in 20 pore
space geometries at different contact angles θo and radii rpd at the end of drainage. The
model [1] is run to rpd in primary drainage using a zero contact angle. Then wettability
is characterised based on the initial fluid configuration, using θw = 0◦ on segments Tj in
contact with water, and θo on segments in contact with oil.

All entry radius curvatures are plotted in Figure 3 as a function of L cos θo/A (to the
left) and L cos θC/A (to the right). Here, θC is Cassie’s contact angle which is defined as
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Figure 3: Computed entry radius curvatures in Bentheimer sandstone pore spaces plotted as a function
of L cos θo/A (left) and L cos θC/A (right). Radii are determined in pixel units.
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Figure 4: Computed entry radius curvatures in four Bentheimer sandstone pore spaces (from left to right)
at different contact angles θo and rpd. Radii are determined in pixel units.

cos θC = (Lw cos θw+Lo cos θo)/L, where Lw and Lo are the total lengths of all segments in
contact with water and oil, respectively, at rpd. The expression L cos θo/A overestimates
the computed entry radius curvatures, whereas L cos θC/A captures the slope quite well,
although the entry curvatures are generally overestimated for water-wet conditions and
underestimated for oil-wet conditions. The latter trend is probably because the favourable
entry curvatures depend less on the lengths of the water-wet boundary segments than
what is reflected by θC , and hence the best approximated effective contact angle for these
displacements can take larger values than θC .

Figure 4 shows 1/rentry computations in four pore spaces as a function of θo at different
rpd. The effect of changing rpd is most significant at oil-wet conditions. If 1/rpd is small,
the favourable invading region may share AMs with larger CR regions. The lengths of
these AMs enter LF

ow,i in Eq. (5), which increases 1/rentry. For larger 1/rpd, the CR regions
are smaller and the invading region may share AMs with residing oil layers instead. The
lengths of these AMs enter LE

ow,i in Eq. (5), resulting in decreased 1/rentry. Figure 6 (left
column) shows entry curvature configurations, which demonstrate that oil layers more
likely form at strongly oil-wet conditions at large 1/rpd. Furthermore, the amount of oil
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Figure 5: Interfacial curvature – saturation curves in three Bentheimer pore space geometries (column-
wise) with small rpd (top row) and large rpd (bottom row), using θw = 0◦ and θo = 20◦ (×), θo = 40◦

(�), θo = 70◦ (+), θo = 130◦ (�), θo = 160◦ (�) and θo = 180◦ (◦). Radii are determined in pixel units.

occupied in the pore after the most favourable region combination of water has invaded
may be significant in strongly non-convex pore shapes.

Figure 5 presents mixed-wet interfacial curvature–saturation curves in three Bentheimer
sandstone pore spaces for different θo and rpd. These curves support our previous find-
ings that rpd may have a large impact on the entry pressure radii at oil-wet conditions.
Moreover, in strongly non-convex pore spaces, several region combinations are invaded by
water at curvatures smaller than the entry curvature reached first. This is also shown in
the configurations plotted in Figure 6, where individual BR regions, merged LR and BR
regions, and individual LR regions are invaded as the interfacial curvature decreases.

6 CONCLUSIONS

A novel model is developed for capillary entry pressure-, fluid configuration- and cap-
illary pressure curve computations in mixed-wet 2D pore spaces with arbitrary shapes
extracted from rock images. The model identifies all possible centre positions of circular
arcs by moving two circles around the pore boundary in opposite directions. The loci of
the circle centres constitute so-called counter-clockwise and clockwise drainage curves. All
relevant arc menisci are associated with intersections of these curves. At lines separating
pore surfaces with different wettability, the circles rotate to permit pinned contact lines
with associated hinging interfaces. Arc menisci and adjoining pore boundary segments
are tracked to form boundaries of different regions. All possible combinations of these
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Figure 6: Evolution of mixed-wet fluid configurations as interfacial curvature decreases (from left to right)
for the cases with small rpd and θo = 180◦ presented in Figure 5 (top row). Water (blue), oil (red) and
segments Tj(θo) (bold green lines) are highlighted. The yellow lines indicate the boundaries of new region
combinations that are invaded by water at the current radius as determined by Eq. (8).

regions are generated and their associated entry pressure radii for invasion is computed by
the Mayer & Stowe – Princen method, including thermodynamically consistent treatment
of partial and complete displacement of oil layers forming at negative capillary pressure.
It is demonstrated that the model captures well-known features of capillary behaviour
at mixed-wet conditions. In particular, entry pressure radius, oil layer existence, fluid
configurations and capillary pressure curves are strongly affected by the reversal point
after drainage. Additional displacements occurring at interface curvatures below the first
reached entry curvature is included in the model, and it is observed that displacements
which involve several regions and partial displacement of oil layers occur frequently in
strongly non-convex Bentheimer pore space geometries.

10



Johan O. Helland and Olav I. Frette

ACKNOWLEDGMENTS

Financial support was provided by the Research Council of Norway, ConocoPhillips
and the Ekofisk co-venturers, including TOTAL, ENI, StatoilHydro and Petoro.

REFERENCES

[1] O.I. Frette and J.O. Helland. A semi-analytical model for computation of capillary
entry pressures and fluid configurations in uniformly-wet pore spaces from 2D rock
images. Adv. Water Resour., doi:10.1016/j.advwatres.2010.05.002, (2010).

[2] W.B. Lindquist. The geometry of primary drainage. J. Coll. Interf. Sci., 296, 655-
668, (2006).

[3] M. Hilpert and C.T. Miller. Pore-morphology-based simulation of drainage in totally
wetting porous media. Adv. Water Resour., 24, 243–255, (2001).

[4] M. Prodanovic and S.L. Bryant. A level set method for determining critical curvatures
for drainage and imbibition. J. Coll. Interf. Sci., 304, 442–458, (2006).

[5] M.G. Schaap, M.L. Porter, B.S.B. Christensen and D. Wildenschild. Com-
parison of pressure-saturation characteristics derived from computed tomogra-
phy and lattice Boltzmann simulations. Water Resour. Res., 43, W12S06,
doi:10.1029/2006WR005730, (2007).

[6] S. Ma, G. Mason and N.R. Morrow. Effect of contact angle on drainage and imbibition
in regular polygonal tubes. Coll. Surf. A: Phys. Eng. Asp., 117, 273–291, (1996).

[7] M.I.J. van Dijke and K.S. Sorbie. Existence of fluid layers in the corners of a capillary
with non-uniform wettability. J. Coll. Interf. Sci., 293(2), 455–463, (2006).

[8] M.I.J. van Dijke, M. Piri, J.O. Helland, K.S. Sorbie, M.J. Blunt and S.M. Skjæveland.
Criteria for three-fluid configurations including layers in a pore with nonuniform
wettability. Water Resour. Res., 43, W12S05, doi:10.1029/2006WR005761, (2007).

[9] M. lago and M. Araujo. Threshold pressure in capillaries with polygonal cross section.
J. Coll. Interf. Sci., 243, 219–226, (2001).

[10] M. Held. Analytical computation of arc menisci configuration under primary drainage
in convex capillary cross sections. Comput. Geosci., 14(2), 311–317, (2010).

[11] P.E. Øren, S. Bakke and O.J. Arntzen. Extending predictive capabilities to network
models. SPE Journal, 3, 324–336, (1998).

[12] A.R. Kovscek, H. Wong and C.J. Radke. A pore-level scenario for the development of
mixed wettability in oil reservoirs. Am. Inst. Chem. Eng. J., 39, 1072–1085, (1993).

11


