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Summary. We introduce in this work a new algebraic process the identification of
unknown parameters in groundwater problems [6].sTiniethod is borrowed from the inverse
problem mathematical community, it is based on dbealled Reciprocity Gap principle
[1,2]. It allows the recovering of parameters fraime knowledge of internal or boundary
hydraulic heads.

1 INTRODUCTION

The efficiency of aquifer modelling as a tool fdretknowledge of the groundwater

resources and for the design of sustainable groatetwmanagement plans, depends
obviously on the degree of our knowledge of therbgdological parameters of the aquifer in
hand, such as transmissivity, storage, well fluxaquifer rechargestc Determining
unknown physical parameters by fitting the modebliserved heads is the so-caliederse
problem.
The trial-and-error procedure is the simplest wagdlve inverse problems. More sophisticate
methods consist on replacing this manual methodabyoptimisation one. From these
remarks, Neuman [7] classified methods of estingagparameters as direct or indirect
according to whether the parameters are obtainestttyi using the head distribution as
known in the differential equation governing thewil or whether they are obtained indirectly
as a non-linear optimisation problem for which & &fecalculated heads is matched to the
observed one.

We introduce in this paper, a new algebraic prodesghe identification of unknown
hydraulic parameters (for more details see [6])e Tinethod, based on the so-called
Reciprocity Gap principle (RG), has been introdugedl,2] for the inverse geometrical
problem of planar cracks identification. It has tegidely exploited within the Inverse
Problems mathematical community essentially foovecing unknown geometries from over-
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specified boundary data. It is inspired on the wkabbwn Maxwell-Betti Reciprocity
Principle.

To illustrate this method we will apply it for regering transmissivities, storages, well's
fluxes [5] and aquifer recharge in both transiemd atationary cases.

2 MATHEMATICAL IDENTIFICATION PROCESS

2.1 The groundwater model

Combining the conservation equations and the Dartaiv we derive the following
boundary value problem which describes flow in pgreaturated media [3]:

S(X, y)% +  div(-T(x,y)d(h)= f in Q
h(x, y,t) =g on M
T oh ® 1)
— = on
on N
h(x, y,0) = H, in Q

WhereS(x,y)is the storage functio,(x,y) the transmissivity functiorf, the source term
which can include well's fluxes or/and surfaced haaging/evaporationg the Dirichlet
boundary condition which represents the prescribedds on a parfp of the domain
boundary and the prescribed flux on the remaining boundayy.

The forward problem, or the aquifer simulation, siets in calculating the piezometric
level h from the knowledge of all the other parameteB T, f, gand @). On the other side,
the inverse problem consists of recovering the rpatars, assuming that the piezometric
heads are known.

2.2 The Reciprocity Gap Principle

Our parameters identification process is an aldelange. It is based on the reciprocity gap
principle (RG). The RG is inspired from the welldan Maxwell-Betti reciprocity principle
which is equivalent to the virtual works theorem.

Roughly speaking, RG compare the response of actilefebody to that of the safe body
having the same characteristics to a given sdiigita In the inverse problem dealing with
recovering transmissivities or storages the ‘s&fea reference homogenous body. While in
the case of well's fluxes or surfaced rechargingpevation identification, the ‘safe’ is the
domain with source teriin= 0.

The main idea of the method is to multiply thetfeguation of the system (1) with harmonic
fields v ( div(grad v) = Q then we integrate it over all the domaihand we use Green’
second formula so that we obtain a linear system.

Let us apply this method for two examples:
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Example n°1 We consider the case of recovering well’s flud&® suppose that we are in
a stationary situation with known transmissivity and that the source terinhas this
expression:

f= %Qk % (2)

With Q is the well abstraction corresponding to a pottrse located a®y with coordinates
(X% Yk) anddis the Dirac distribution.

Multiplying the first equation of (1) by, integrating it over all the domai2 and using Green’
second formula we find:

RY) = YQMR) @
k

Where:

_ oh  ov 4
R(V) —JGQT(%V S dr

Then we exploit the reciprocity gap functional witlrious particular fields.

Notice that the left hand side of the equality (3tpis totally known and depends only on the
boundary data. _

More precisely, fok wells with unknown fluxes we evaluaR(2) wherez is the complex
variable (the real and imaginary partzZofre harmonic). Then equation (3) is written:

RZ) = Yoz ©
k

wherez = X +iyk is the affix of the point sourde.
Therefore the determination of the fluxes of aexdlbn of wells amounts to solving a linear
system :

AQ = b (6)

Where:
- A= (i,-) is the Wandermonde matrix wiithe complex variable,
- Q=(Q)) the unknown fluxes vector and

- b=(R(2)) the known right hand side vector of equation (d\hichv=2".
Note that in the case of recovering surface rechg¥gvaporation quantities, only equation
(3) becomes:
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Rv) = YE] o VdS @)
k k
WherekEy is the recharging\evaporation quantities @&ndhe surface of recharge\evaporation.
So we obtain a linear system to solve :
BE = b (8)
Where:

- the general coefficient of the matixis :Bij = fzi ,
Q

- E = (B) the unknown recharge vector and
- b = (R(2)) the same vector as the case of identifying wélixes.

Example n°2 In the case of storage identification, we suppibseS(x,y)is a piecewise
constant unknown functioff, f, gand @ are known and that the piezometric hbad known
at the initial time I = Ho(x,y)) and the final timd; (h = Hx(x,y)) in all the domairQ. Appling
the RG principle we find:

RV)= Y [S (H, —H v dQ )
ko
With:
T T T (10)
rRv) = Tv [ gtlar TV th dt| dr+ [dt[fv do
@ =™ [P a1 fh | are fag
T0 0Q T0 T0 Q

Therefore the identification of the storage coéiits amounts to solving a linear system:
CS = ¢ (11)

Where:
- the general term of matr is: Cij = j (H]c - Ho)vi dQ,
Q

- S=(§) is the unknown storage coefficient vector and
- ¢=(R(2)) the right hand side vector of equation (9) in ahisZ' .
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Let us point out that the accessible data in thverse problem under consideration in
example n°1 corresponds tocamplete boundary datah. Whereas in the case of storage
identification as well as transmissivity identifitan we need @omplete interior datah. As,
generally, in practice we have the value of theraytic head, only in few measurement
points, we resort to interpolate methods like knigio deduce the complete interior data.

3 NUMERICAL TRIALS

The observed values (free of measurements errerijrat generated by solving a forward
problem by finite element analysis, computationgehbeen run on FemLab [4]. Then the
inverse problem is solved by applying the recipgsoprinciple.

We consider two cases, one in a stationary sitnaa the other in the transient situation.
For the steady case we deal with the recharge/eatipo identification, while in the non-
steady study we recover the storage coefficients.

3.1 Stationary case

We consider the synthetical case of a heterogendonmin with two surface recharging
zones, as shown on figure 1. The studiedy domaa risctangular 1000mx250m, with two
vertical impermeable boundaries and two horizoptascribed head boundaries. The domain
is meshed with a regular mesh of triangular elemerith linear interpolation, characterized
by 3063 nodes and 1468 elements.

Note that as shown on equation (4), in this case, ngeed the knowledge of heads
measurements only on theundaries of the domain

1000

290

T1

Figure 1: Heterogeneous case with two unknown rgetthsurface

Actual recharge values, computed ones and theuelatror are shown on Table 1. We
note that the identification is efficient since tiedative error is acceptable and less than 15%.
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Ri exac (M°SY) 2510 110°
Ri cac (M° ) 2.210° 0.89 10°
Relative Error (%)| 12 11

Table 1: Exact recharge values &) and computed ones (R

3.2 Transient case

a- Storage identification with complete interior data

We consider the synthetical case of a heterogendgmusin with two storage coefficients,
as shown on figure 2. The studied domain is a ngedar 1000m x 500m with transmissivity
T = 20nf/day and an uniform recharge varying from 5'1f/day at the initial time to 3 10
m/day at 30 days. Boundary conditions are two e&timpermeable boundaries and two
horizontal prescribed head boundariggdh= 20m and Bwer = 10m). The domain is meshed
with a regular mesh of triangular elements withedin interpolation, characterized by 981
nodes and 466 elements.
Note that as shown on equation (11), in this caseneedcomplete interior but only at the
initial and final times

1000

H=20m

S2

500

S1

H=10m

Figure 2: Studied case with two unknown storagédfiients

S exac (M° S7) 0.01 0.0001
S caic (M° 57 0.0102 0.00011
Relative Errors (%)| 2% 11%

Table 2: Exact storage coefficient {S¢) and computed ones;(g.)

b- Storage identification with interpolated da¥dith this last example we consider, in the
storage identification procedure, piezometric datach are interpolated from local
measurements in the domain instead of the hypotlsétiation where these data are
supposed to be available in the entire domain. this, we use the values of the
hydraulic heads on some points as shown on Figd3imterpolate them with the
kriging method, using the software Surfer [8], Wef@womputing the integrals for
equations (9) and (10).
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Figure 3: The case with two unknown storage coieffits with measurement points (x).

S exac (M° S7) 0.01 0.0001
S caic (M° 87 0.011 0.00012
Relative Error (%)| 12 21

Table 3: Exact storage coefficient {Q.) and computed ones;(§J in the kriging case

4 CONCLUSIONS

+ We present here a new explicit method, based omR#a#procity Gap Principle, for
the identification of aquifers parameters from kingeezometric levels data.

« This identification process provides an algebragt ef equations very easy to
implement.

« The numerical trials that we performed have shoha efficiency of the present
method : in all cases, the error on the parametmvered remains acceptable

+ For the last example, this algebraic identificatmmocess was preceded by a kriging
interpolation step to obtain the hydraulic headhi®a whole domain. Even in this case
the numerical results remain satisfactory.

+ The presented method is very cheap (both from thepatational time and the
implementation process), it can be exploited teegwn appropriate first guess in an
iterative parameters recovering method.
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