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Summary. We introduce in this work a new algebraic process for the identification of 
unknown parameters in groundwater problems [6]. This method is borrowed from the inverse 
problem mathematical community, it is based on the so-called Reciprocity Gap principle 
[1,2]. It allows the recovering of parameters from the knowledge of internal or boundary 
hydraulic heads.  
 
1 INTRODUCTION 

The efficiency of aquifer modelling as a tool for the knowledge of the groundwater 
resources and for the design of sustainable groundwater management plans, depends 
obviously on the degree of our knowledge of the hydrogeological parameters of the aquifer in 
hand, such as transmissivity, storage, well fluxes, aquifer recharges etc. Determining 
unknown physical parameters by fitting the model to observed heads is the so-called inverse 
problem. 
The trial-and-error procedure is the simplest way to solve inverse problems. More sophisticate 
methods consist on replacing this manual method by an optimisation one. From these 
remarks, Neuman [7] classified methods of estimating parameters as direct or indirect 
according to whether the parameters are obtained directly using the head distribution as 
known in the differential equation governing the flow, or whether they are obtained indirectly 
as a non-linear optimisation problem for which a set of calculated heads is matched to the 
observed one. 

We introduce in this paper, a new algebraic process for the identification of unknown 
hydraulic parameters (for more details see [6]). The method, based on the so-called 
Reciprocity Gap principle (RG), has been introduced in [1,2] for the inverse geometrical 
problem of planar cracks identification. It has been widely exploited within the Inverse 
Problems mathematical community essentially for recovering unknown geometries from over-
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specified boundary data. It is inspired on the well-known Maxwell-Betti Reciprocity 
Principle. 

To illustrate this method we will apply it for recovering transmissivities, storages, well’s 
fluxes [5] and aquifer recharge in both transient and stationary cases. 

 

2 MATHEMATICAL IDENTIFICATION PROCESS 

2.1 The groundwater model 

Combining the conservation equations and the Darcy's law we derive the following 
boundary value problem which describes flow in porous saturated media [3]:  
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Where S(x,y) is the storage function, T(x,y) the transmissivity function, f the source term 
which can include well’s fluxes or/and surfaced recharging/evaporation, g the Dirichlet 
boundary condition which represents the prescribed heads on a part ΓD of the domain 
boundary and Φ the prescribed flux on the remaining boundary ΓN . 

The forward problem, or the aquifer simulation, consists in calculating the piezometric 
level h from the knowledge of all the other parameters ( S, T, f, g and Φ). On the other side, 
the inverse problem consists of recovering the parameters, assuming that the piezometric 
heads are known.  

2.2 The Reciprocity Gap Principle 

Our parameters identification process is an algebraic one. It is based on the reciprocity gap 
principle (RG). The RG is inspired from the well-known Maxwell-Betti reciprocity principle 
which is equivalent to the virtual works theorem. 
Roughly speaking, RG compare the response of a defective body to that of the safe body 
having the same characteristics to a given solicitation. In the inverse problem dealing with 
recovering transmissivities or storages the ‘safe’ is a reference homogenous body. While in 
the case of well’s fluxes or surfaced recharging\evaporation identification, the ‘safe’ is the 
domain with source term f = 0. 
The main idea of the method is to multiply the first equation of the system (1) with harmonic 
fields v ( div(grad v) = 0) then we integrate it over all the domain Ω and we use Green’ 
second formula so that we obtain a linear system. 
Let us apply this method for two examples: 
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Example n°1: We consider the case of recovering well’s fluxes. We suppose that we are in 
a stationary situation with known transmissivity T and that the source term f has this 
expression: 

k
P

k
kQf δ∑=  (2) 

With Qk is the well abstraction corresponding to a point source located at Pk with coordinates 
(xk,yk) and δ is the Dirac distribution. 
Multiplying the first equation of (1) by v, integrating it over all the domain Ω and using Green’ 
second formula we find: 
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Then we exploit the reciprocity gap functional with various particular fields v. 
Notice that the left hand side of the equality (3 or 4) is totally known and depends only on the 
boundary data. 
More precisely, for k wells with unknown fluxes we evaluate R(zj) where z is the complex 
variable ( the real and imaginary part of zj are harmonic). Then equation (3) is written: 
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where zk = xk +iyk is the affix of the point source Pk. 
Therefore the determination of the fluxes of a collection of wells amounts to solving a linear 
system : 

bQA =  (6) 

Where: 

- A = (zi
j) is the Wandermonde matrix with z the complex variable, 

-  Q=(Qj) the unknown fluxes vector and 

-  b=(R(zi)) the known right hand side vector of equation (4) in which v=zi . 
Note that in the case of recovering surface recharging\evaporation quantities, only equation 
(3) becomes: 
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Where Ek is the recharging\evaporation quantities and Ωk the surface of recharge\evaporation. 
So we obtain a linear system to solve : 

bEB =  (8) 

Where: 

- the general coefficient of the matrix B is : ∫
Ω

=

j

i
ij zB , 

- E = (Ej) the unknown recharge vector and 

- b = (R(zi)) the same vector as the case of identifying wells’ fluxes. 

 
Example n°2: In the case of storage identification, we suppose that S(x,y) is a piecewise 

constant unknown function ,T, f, g and Φ are known and that the piezometric head h is known 
at the initial time (h = H0(x,y)) and the final time Tf (h = Hf(x,y)) in all the domain Ω. Appling 
the RG principle we find: 

Ω−= ∑ ∫
Ω

dvHHSvR f
k

k

k

)()( 0  (9) 

With: 

∫∫∫ ∫∫∫
Ω

Ω∂
Ω∂

Ω+Γ
















∂
∂−Γ

















∂
∂= dfvdtddth

n

v
Tddt

n

h
TvvR

fff
T

T

T

T

T

T
000

)(  

(10) 

Therefore the identification of the storage coefficients amounts to solving a linear system: 

cSC =  (11) 

Where: 
- the general term of matrix C is: Ω−= ∫

Ω
dvHHC

j

ifij )( 0 ,  

- S=(Sj) is the unknown storage coefficient vector and  

- c=(R(zi)) the right hand side vector of equation (9) in which v=zi . 
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Let us point out that the accessible data in the inverse problem under consideration in 

example n°1 corresponds to a complete boundary data h. Whereas in the case of storage 
identification as well as transmissivity identification we need a complete interior data h. As, 
generally, in practice we have the value of the hydraulic head, only in few measurement 
points, we resort to interpolate methods like kriging to deduce the complete interior data. 

 

3 NUMERICAL TRIALS 

The observed values (free of measurements error) are first generated by solving a forward 
problem by finite element analysis, computations have been run on FemLab [4]. Then the 
inverse problem is solved by applying the reciprocity principle. 

We consider two cases, one in a stationary situation and the other in the transient situation. 
For the steady case we deal with the recharge/evaporation identification, while in the non-
steady study we recover the storage coefficients. 

3.1 Stationary case 

We consider the synthetical case of a heterogeneous domain with two surface recharging 
zones, as shown on figure 1. The studiedy domain is a rectangular 1000mx250m, with two 
vertical impermeable boundaries and two horizontal prescribed head boundaries. The domain 
is meshed with a regular mesh of triangular elements with linear interpolation, characterized 
by 3063 nodes and 1468 elements. 
Note that as shown on equation (4), in this case, we need the knowledge of heads 
measurements only on the boundaries of the domain. 

 
Figure 1: Heterogeneous case with two unknown recharged surface 

Actual recharge values, computed ones and the relative error are shown on Table 1. We 
note that the identification is efficient since the relative error is acceptable and less than 15%. 

 

H = 5 0

H = 1 0
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Ri exact (m
3 s-1) 2.5 10-3 1 10-6 

Ri calc (m
3 s-1) 2.2 10-3 0.89 10-6 

Relative Error (%) 12 11 

Table 1: Exact recharge values (Ri exact) and computed ones (Ri calc) 

3.2 Transient case 

a- Storage identification with complete interior data: 
We consider the synthetical case of a heterogeneous domain with two storage coefficients, 

as shown on figure 2. The studied domain is a rectangular 1000m x 500m with transmissivity 
T = 20m2/day and an uniform recharge varying from 5 10-4 m/day at the initial time to 3 10-4 
m/day at 30 days. Boundary conditions are two vertical impermeable boundaries and two 
horizontal prescribed head boundaries (hupper = 20m and hlower = 10m). The domain is meshed 
with a regular mesh of triangular elements with linear interpolation, characterized by 981 
nodes and 466 elements. 
Note that as shown on equation (11), in this case, we need complete interior but only at the 
initial and final times 

Figure 2: Studied case with two unknown storage coefficients 

 

Si exact (m
3 s-1) 0.01 0.0001 

Si calc (m
3 s-1) 0.0102 0.00011 

Relative Errors (%) 2% 11% 

Table 2: Exact storage coefficient (Si exact) and computed ones (Si calc) 

b- Storage identification with interpolated data: With this last example we consider, in the 
storage identification procedure, piezometric data which are interpolated from local 
measurements in the domain instead of the hypothetic situation where these data are 
supposed to be available in the entire domain. For this, we use the values of the 
hydraulic heads on some points as shown on Fig 3 and interpolate them with the 
kriging method, using the software Surfer [8], before computing the integrals for 
equations (9) and (10). 

H= 10 m

S2

H= 20 m

S1
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Figure 3: The case with two unknown storage coefficients with measurement points (x). 

 

Si exact (m
3 s-1) 0.01 0.0001 

Si calc (m
3 s-1) 0.011 0.00012 

Relative Error (%) 12 21 

Table 3: Exact storage coefficient (Si exact) and computed ones (Si calc) in the kriging case 

 

4 CONCLUSIONS 

• We present here a new explicit method, based on the Reciprocity Gap Principle, for 
the identification of aquifers parameters from known piezometric levels data. 

• This identification process provides an algebraic set of equations very easy to 
implement. 

• The numerical trials that we performed have shown the efficiency of the present 
method : in all cases, the error on the parameter recovered remains acceptable 

• For the last example, this algebraic identification process was preceded by a kriging 
interpolation step to obtain the hydraulic head in the whole domain. Even in this case 
the numerical results remain satisfactory. 

• The presented method is very cheap (both from the computational time and the 
implementation process), it can be exploited to give an appropriate first guess in an 
iterative parameters recovering method. 
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