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Summary. Numerical methods for calculation of the coefficients of the Ginzburg-Landau
equation describing the evolution of the most unstable mode in a shallow water flow
within the framework of a weakly nonlinear theory are described in the present paper.
Chebyshev collocation method is used to compute the eigenvalues and eigenfunctions of
a linear stability problem. Approximation in the form of Chebyshev polynomials is also
applied to solve three boundary value problems (one of which is resonantly forced) whose
solutions are used later to compute the coefficients of the Ginzburg-Landau equation.

1 INTRODUCTION

Shallow water flows are widespread in nature and engineering. Examples include flows
in compound and composite channels, jets, mixing layers and wakes. Large-scale two
dimensional structures observed experimentally in shallow water flows are believed to
appear as a result of hydrodynamic instability of the flow. From a practical point of view,
complex eddy-type motion observed in experiments and in the field can lead to poor water
quality since complex flows can trap sediments and pollutants. Linear stability analysis
is often applied in such cases to determine conditions where a particular flow becomes
unstable. Method of normal modes is used in1,2,3 in order to obtain critical values of
the bed-friction number below which shallow water flow becomes unstable with respect
to small perturbations. Linear stability theory, however, cannot predict evolution of the
most unstable mode above the threshold. Weakly nonlinear theories are used to study
the development of instability when the value of the parameter characterizing the flow
(for example, the Reynolds number for channel flows or bed-friction number for shallow
flows) lies in the region of linear instability and is very close to the critical value on the
stability boundary. Since the growth rate of an unstable mode in such cases is small,
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it is possible to take into account nonlinearities analytically by using weakly nonlinear
expansions about the critical point. To the authors’ knowledge, such an approach was
considered for the first time in4 for the case of a plane Poiseuille flow and was used later
in3,5 for shallow flows.

In the present paper we describe numerical methods for the solution of weakly nonlinear
stability problems. Two examples are considered: (a) weakly nonlinear stability analysis
of shallow water flows and (b) weakly nonlinear stability of two-component shallow flows
for the case of large Stokes number.

2 GINZBURG-LANDAU EQUATION

Using methods of weakly nonlinear theory is shown in3 that for the case of shallow
water flows an amplitude evolution equation for the most unstable mode is the complex
Ginzburg-Landau equation (CGLE). In the present paper we consider numerical method
for calculation of the coefficients of the CGLE. However, for completeness basic steps
of the derivation are summarized below. Consider shallow water equations under the
rigid-lid assumtion of the form 3
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where u and v are the depth-averaged velocity components in the x and y directions, re-
spectively, p is the pressure, cf is the friction coefficient and h is water depth. Eliminating
the pressure and introducing the stream function by the relations u = ψy, v = −ψx, we
rewrite equations (1)–(3) in the form
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2h
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Consider a perturbed solution of (4) in the form

ψ(x, y, t) = ψ0(y) + εψ1(x, y, t) + ε2ψ2(x, y, t) + ε3ψ3(x, y, t) + . . . . (5)

Substituting (5) into (4) and neglecting the terms of order ε2 and higher (the meaning of
the parameter ε will be clarified later), we obtain the linearized equation of the form

Lψ1(x, y, t) = 0, (6)
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where

Lψ1 = ψ1xxt + ψ1yyt + ψ0y(ψ1xxx + ψ1yyx) − ψ0yyyψ1x (7)

+
cf
2h

[(ψ1xx + 2ψ1yy)ψ0y + 2ψ1yψ0yy]

Using the method of normal modes we assume that

ψ1(x, y, t) = ϕ1(y) exp[ik(x− ct)], (8)

where k is the wavenumber, c is the (complex) phase speed and ϕ1(y) is the amplitude of
the normal perturbation. Substituting (8) into (6) we obtain

L1ϕ1 = 0, (9)

where

L1ϕ1 = ϕ1yy[ik(u0 − c) + Su0] + Su0yϕ1y − ϕ1[ik
3(c− u0) − iku0yy − k2u0S/2]. (10)

Here S = cfb/h is the stability parameter and b is characteristic length scale (in case of
wake flows b is the half-width of the wake 3). The boundary conditions are

ϕ1(±∞) = 0. (11)

For the given base flow velocity profile u0(y) eigenvalue problem (9), (11) can be solved
numerically and the critical values of the parameters k, c and S, namely, kc, cc and Sc

can be determined (see, for example,2,3).
In order to analyze the development of the most unstable mode in a weakly nonlinear

regime we assume that the parameter S is slightly smaller than the critical value, namely,
S = Sc(1 − ε2). Following4 we introduce the ”slow” time and longitudinal coordinate by
the relations τ = ε2t, ξ = ε(x− cgt), where cg is the group velocity. Subsituting (5) into
(4) and collecting the terms of orders ε2 and ε3 we obtain the following equations

Lψ2 = g1, (12)

Lψ3 = g2. (13)

In addition, the function ψ1(x, y, t) is sought in the form

ψ1 = A(ξ, τ )ϕ1(y) exp[ikc(x− cct)] + c.c., (14)

where the notation ”c.c” denotes complex conjugate and A is the slowly varying amplitude
of the most unstable mode. Functions g1 and g2 are bulky and for this reason are not
shown here (the details can be found in 3). Note that the function g1 depends on ψ1. The
form of the function g1 suggests that the solution to (12) should be sought in the form

ψ2 = AA∗ϕ
(0)
2 (y) +Aξϕ

(1)
2 (y) exp[ikc(x− cct)] +A2ϕ

(2)
2 (y) exp[2ikc(x− cct)] + c.c., (15)
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where A∗ denotes the complex conjugate of A. Substituting (15) into (12) and replacing
ψ1 with (14) we obtain the following three boundary value problems for the unknown
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The operator L in (6), (12) and (13) is the same. Note that homogeneous equation
(6) has a nontrivial solution. Then, in accordance with the Fredholm’s alternative6 the
corresponding non-homogeneous equations (12) and (13) have solutions if and only if the
right-hand sides of (12) and (13) are orthogonal to all eigenfunctions of the homogeneous
adjoint problem. The adjoint operator La

1 and adjoint eigenfunction ϕa
1 of La

1 are defined
as follows: ∫ +∞

−∞
ϕa

1L1(ϕ1) dy =
∫ +∞

−∞
ϕ1L

a
1(ϕ

a
1) dy. (22)

The group velocity cg can be found by applying the solvability condition to equation (12).
Finally, using the solvability condition to equation (13) the amplitude evolution equation
for the most unstable mode is obtained. It is shown in3 that in this case the evolution
equation is the complex Ginzburg-Landau equation (CGLE) of the form

∂A

∂t
= σA+ δ

∂2A

∂ξ2
− µ|A|2A, (23)

where σ, δ and µ are complex coefficients. To summarize, in order to find the coefficients
of the CGLE (23) one needs to perform the following calculations: (1) for a given base
flow velocity profile u0(y) compute the critical values of the parameters k, S and c of linear
stability problem (9), (11); (2) find the corresponding eigenfunction ϕ1(y); (3) compute
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the corresponding adjoint eigenfunction ϕa
1(y); (4) solve three boundary value problems

(16)–(21); (5) find the group velocity cg from the solvability condition applied to equation
(12); (6) evaluate the integrals from the solvability condition applied to equation (13)
and compute the coefficients of the CGLE (23). Numerical procedure that is used for the
calculation of the coefficients of the CGLE is desribed in detail in the next section.

3 NUMERICAL METHOD AND RESULTS

In order to solve linear stability problem (9), (11) we use a collocation method based
on Chebyshev polynomials7 that are defined on the interval [-1,1]. Hence, we map the
interval (−∞,+∞) by means of the transformation r = 2/π arctan y. The function ϕ1 in
(9) is sought in the form

ϕ1(r) =
N−1∑

k=0

ak(1 − r2)Tk(r), (24)

where Tk(r) = cos k arccos r are the Chebyshev polynomials of the first kind of order k,
ak are unknown koefficients and N is the number of collocation points on the interval
−1 ≤ r ≤ 1. The factor 1 − r2 in (24) guarantees that zero boundary conditions at the
endpoints of the interval [-1,1] are automatically satisfied. The collocation points inside
the interval (-1,1)are given by

rj = cos
πj

N + 1
, j = 1, 2, . . . , N − 1. (25)

Using the chain rule we compute the derivatives
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Substituting (26), (27), (30), (31) into (9) and evaluating the function ϕ1 and its deriva-
tives at the collocation points (25) we obtain a generalized eigenvalue problem of the
form

(A− cB)a = 0, (33)

where A and B are complex-values matrices and a = (a0, a1, . . . , aN−1) is the vector
containing unknown coefficients ak. Numerical solution of (33) can be found, for example,
by means of IMSL routine DGVCCG8. The same routine can be used to compute the
corresponding eigenvector of (33) and the eigenfunction of problem (9), (11). Similarly
one can solve the adjoint problem and find the corresponding eigenfunction ϕa

1.
Boundary value problems (16), (17) and (20), (21) are solved using (24). The cor-

responding systems of equations obtained after discretization are well-posed and can be
solved by any linear equation solver. Problem (18), (19) is resonantly forced since the
corresponding homogeneous problem has a nontrivial solution. As a result we use the
singular value decomposition method9 to solve problem (18), (19) after discretization.
Finally, using the solvability condition for equation (14) the coefficients of the CGLE (23)

are calculated as integrals containing functions ϕ1, ϕ
a, ϕ

(0)
2 , ϕ

(1)
2 and ϕ

(2)
2 .

Two examples of weakly nonlinear analysis are presented below in order to illustrate
the procedure. First, we consider shallow wake flow of one-component fluid governed by
equation (4). The base flow velocity profile is chosen in the form

u0(y) = 1 +
2R

1 −R

1

cosh2(αy)
, (34)

where R = (Uc − Ua)/(Uc + Ua) is the velocity ratio, Uc is the velocity at the centerline,
Ua is the ambient velocity, α = sinh−1(1).

Second, a two-component shallow flow is considered under the assumption that the
Stokes number is considerably larger than unity. This assumption implies that heavy
particles are uniformly distributed in the carrier fluid and are completely unresponsive
to the changes in fluid motion. In other words, the particles are ”frozen” in their initial
state10. It is shown in11 that for this case the amplitude evolution equation for the most
unstable mode is also CGLE of the form (23). Using the formulas derived in3 and11 we
present here the results of numerical computations of the coefficients of the CGLE (23).
All computations are done for the velocity profile of the form (34)for the case R = −0.5
for three values of the particle loading parameter B10 (see Table 1). As can be seen from
Table 1, the real part of µ (referred to as the Landau constant in the literature) is positive
for all cases considered so that the final amplitude saturation is possible.

4 CONCLUSIONS

Numerical aspects of weakly nonlinear theory are described in the present paper.
Chebyshev collocation method is used to solve linear stability problem and corresponding
adjoint problem. In addition, three boundary value problems are solved by the same
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B σ δ µ
0.0 0.0899+0.0004i 0.1150-0.1834i 4.5212+11.6033i
0.02 0.0716+0.0001i 0.1116-0.2131i 4.8302+11.7427i
0.04 0.0529-0.0000i 0.1062-0.2438i 5.3386+11.6620i

Table 1: The coefficients of the Ginzburg-Landau equation.

method (one of the problems is resonantly forced, therefore, singular value decomposition
method is used to obtain the solution). Finally, the coefficients of the Ginzburg-Landau
equation are calculated as integrals containing the five functions obtained before (the
eigenfunctions of the linear stability problem and adjoint problem, and the three func-
tions representing the solutions of the three boundary value problems). The complex
Ginzburg-Landau equation can be used to analyze the development of the most unstable
mode in a weakly nonlinear regime. Numerical calculations using the CGLE are in quali-
tative agreement with the results of numerical simulations of shallow wake flow behind an
obstacle in12 in terms of overall behavior of perturbations and saturation amplitude of the
most unstable mode. It is also shown in11 that purely periodic solutions of the CGLE are
unstable and, therefore, are not observable. This fact is also consistent with experimental
observations of shallow wake flows. However, a full spatio-temporal analysis of shallow
wake flows in a nonlinear regime is required for verification of the Ginzburg-Landau model.
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