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Summary. In this paper the iterative MSFV method is extended to include the sequential 

implicit simulation of time dependent problems involving the solution of a system of 

pressure-saturation equations. To control numerical errors in simulation results, an error 

estimate, based on the residual of the MSFV approximate pressure field, is introduced. In the 

initial time steps in simulation iterations are employed until a specified accuracy in pressure is 

achieved. This initial solution is then used to improve the localization assumption at later time 

steps. Additional iterations in pressure solution are employed only when the pressure residual 

becomes larger than a specified threshold value. Efficiency of the strategy and the error 

control criteria are numerically investigated. This paper also shows that it is possible to derive 

an a-priori estimate and control based on the allowed pressure-equation residual to guarantee 

the desired  accuracy in saturation calculation. 

 

1 INTRODUCTION 

Multiphase flow in a large geological formation, which honors integrated data provided by 

geoscientists, is computationally too expensive to be solved on the fine grid that defines 

detailed medium properties. In the past decade, several multiscale methods have been devised 

to reduce the computational cost
1-4

. Among the proposed methods, the Mixed Multiscale 

Finite Element (MMSFE)
2,4

 and the Multiscale Finite Volume (MSFV)
3
 methods provide 

locally conservative velocity fields, which makes them suitable for solving transport problems 

accurately.  

For a wide range of heterogeneous test cases the solutions provided by the MSFV method 

are in very close agreement with those obtained from solving the problem on the original fine 

grid with a classical finite volume scheme. The accuracy of MSFV, however, deteriorates in 
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solving flow in highly channelized permeability fields (e.g. the SPE10 bottom-layer
5
) and 

highly anisotropic problems (e.g. heterogeneous test cases with stretched grids
6
). In order to 

improve the accuracy of the multiscale solution, several iterative MSFV (i-MSFV) methods 

have been proposed, which converge to the fine-scale reference result
7,8,10

. An appealing 

property of these i-MSFV methods is that a locally conservative fine-scale velocity field can 

be reconstructed at any iteration. This allows us to choose an appropriate number of iterations 

compatible with the requirements of accuracy and computational efficiency without 

compromising the flux conservations.  

In this work the i-MSFV method is applied to solve the pressure equation in sequentially 

implicit simulation of multiphase flow. The transport equation in fine-scale is solved with the 

approximate velocity field, calculated by i-MSFV iterations. Since these approximate 

velocities are the only source of errors in solving the saturation (transport) equations, we can 

derive a formula to estimate this type of error. From error analysis, we show that controlling 

the residual reduces the error in most regions of the domain, except those close to the front 

with a sharp saturation gradient. Therefore, we propose to control the residual of the pressure 

equation in order to reduce the error of the coupled flow-transport system of equations. We 

numerically investigate the efficiency of the i-MSFV method for sequentially fully implicit 

simulations of multiphase flow in porous media. 

2 GOVERNING EQUATIONS AND SIMULATION STRATEGY 

From the mass conservation equations of n incompressible phases and the constraint that 

the pore volume is constant, we obtain the elliptic pressure equation 

K p( ) = q, (1) 

where K is the absolute permeability tensor,  is the total mobility, and q is the source term. 

This pressure equation has to be solved together with n-1 saturation transport equations 

d

dt
S( ) + f ut( ) = q          {1,…,n -1}, 

(2) 

and subject to proper initial and boundary conditions. In equation (2),  is the porosity, S  is 

the phase saturation, f  is the phase fractional flow function, and ut = K p is the total 

velocity vector. 

 

 Equation (1) is discretized by a standard 5-point-stencil finite volume scheme on a 

Cartesian grid. The resulting linear system can be written in the form 

Ap = r, (3) 

where A is the coefficient matrix, p the unknown vector, and r the right hand side vector. Since 

inverting the penta-diagonal matrix is computationally too expensive for a large system, 

equation (3) is approximated by the MSFV method, which solves this linear equation more 

efficiently. First, a coarse grid is imposed on the domain and a dual (coarse) grid is 

constructed by connecting the centers of coarse cells. The dual grid naturally defines a 

partition of the fine cells into internal, edge, and node cells; and the system in equation (3) is 
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reordered such that the equations of internal cells appear first, then edge cells, and finally 

node cells
9
. The re-ordered system 

˜ A ̃  p = ˜ r  (4) 

is obviously equivalent to the original system
9
. 

2.1 The iterative MSFV method 

Instead of solving equation (4) directly, the MSFV method solves an approximate re-

ordered system 

M˜ p '=Q˜ r , (5) 

where the matrix M is block upper-triangular and is, therefore, cheaper to invert than ˜ A . 

Equation (5) describes both the solution of the coarse-grid balance problem and the 

subsequent calculation of edge and node pressures. The coarse grid pressure equation is 

constructed by means of basis and correction functions, and yields the node-point pressures. 

Subsequently reduced problems along the edges are solved using the node-point pressures as 

Dirichlet boundary conditions. And with the edge-point pressures as Dirichlet boundary 

conditions, the internal-point pressures are computed. This procedure is illustrated in figure 1. 

The matrix Q  is a lower triangular matrix that replaces the node source terms by the 

appropriate right hand sides for the coarse-grid balance problem (and leaves the internal and 

edge source terms unchanged). This formulation of the MSFV method is described in detail 

by Lunati and Lee
9
 and it is equivalent to the standard formulation of the MSFV method with 

correction function
11

. 

 

                    
 

Figure 1: 2D domain with 10x10 fine grid (black lines) and 2x2 coarse grid (bold blue lines). In  the partition 

introduced by the dual grid, fine cells are labeled as internal (light-blue), edge (green), and node (dark-blue) 

cells. Arrows are used to represent the stencil used for the fine-scale solution (left) and for the MSFV solution 

(right): denoting the arrow starting points  as “predecessors” and the end points as “successors”, an arrow 

indicates that the pressure value of the predecessor affects the mass balance of the successor (see Lunati and 

Lee
9
). 
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Since ˜ A  and M are different, the fine-scale solution and the MSFV solution are never 

strictly identical. This is due to the localization operated along the edges of the dual cells, 

which neglects the transversal fluxes
7,8,10

. An iterative algorithm converging to the fine-scale 

solution, however, can be constructed estimating the neglected fluxes from the residual 

(˜ r ˜ A ̃  p ) , where ˜ p  is the solution of equation (5). After some mathematical manipulations, one 

obtains an iterative scheme of the form
10

 

˜ p +1
= ˜ p + wvM 1Q(˜ r ˜ A ̃  p ) , (6) 

where  is the iteration superscript (and initial pressure value is ˜ p 0 = M 1Q˜ r ), and w
v is a 

relaxation parameter, which  is computed by  the Generalized Minimal Residual (GMRES) 

method
12

 to  accelerate convergence. 

2.2 The i-MSFV method for time dependent problems 

 An important property of the i-MSFV method is that the velocity field ˜ u t = K t ˜ p +1 (at 

any iteration level v) is conservative at the coarse scale. To obtain a conservative velocity 

field at the fine scale, additional local problems are solved in the coarse cells subject to ˜ u t  as 

Neumann boundary condition, resulting in the reconstructed velocity field ˜   u t = K t ˜   p . The 

approximate velocity field ut , which is equal to ˜   u t  inside the coarse cells and to ˜ u t  on the 

coarse-cell boundaries, is locally conservative, i.e. .ut = 0 , at the fine-scale
13

. Therefore, the 

conservative velocity field is used to solve the nonlinear saturation equations (2) on the fine 

grid. Implicit time integration leads to the nonlinear saturation equation,   

t
Sn+1 Sn( ) +  f n+1ut( ) = q , 

(7) 

which is solved by Newton Raphson iterations. 

 

After convergence of this iterative loop (inner loop), the mobility is updated with the new 

saturation, Sn+1, and then the pressure equation is solved again. This procedure is repeated 

until the coupled pressure-saturation (or flow-transport) system converges (outer loop). In this 

solution scheme, the pressure equation is solved several times. To improve the efficiency of 

numerical simulation, it is important to minimize the number of iterations in (6). This can be 

achieved by using the old pressure solution to estimate the transversal fluxes across the dual 

edges in the new-pressure solution
7
. This corresponds to use the solution of the equation  

M˜ p 0 =Q˜ r + E(M˜ p n Q˜ r ) , (9) 

as an initial pressure value for the iterative scheme in equation (6). The second term on the 

right hand side computes the estimated gradient of transversal fluxes from the old pressure 

solution, and E is an appropriate matrix operator
10

. 

3 ERROR CONTROL OF THE SATURATION EQUATION 

As mentioned before, the stopping criterion for i-MSFV iterations entails a quality measure 

of the pressure field. Since the saturation equations are solved at fine-scale, the error in the 
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phase saturation field is only incurred due to the approximate pressure field from the 

incompletely converged solution in the i-MSFV method. The fine-scale saturation transport 

equation for phase  given by equation (2) can be restated as 

d

dt
S( ) + f .ut

* + ut
*. f + f . ˆ u t + ˆ u t . f = f q , 

(10) 

where the superscripts * and ^ stand for the exact and  error terms in the total velocity, 

i.e. ut = ut
*
+ ˆ u t . The reformulation of the saturation equation will consequently lead to the error 

terms introduced by the inexact velocity field, i.e. 

e = f ˆ u t + ˆ u t . f = f ˆ u t + ˆ u t .(df /dS ) S . (11) 

As previously mentioned, in the MSFV and i-MSFV methods, the approximate velocity field 

ut is calculated based on the reconstructed ( ˜   p ) and superimposed ( ˜ p v+1) pressure fields in a 

way that it is divergence free, i.e. .ut = 0
13

. The exact velocity field is also divergence free, 

i.e. .ut
*
= 0 .  As a result, the error in the saturation equation is equal to ˆ u t . f  that is 

introduced due to the approximate conservative i-MSFV velocity ut .  

Direct calculation of the velocity error ˆ u t  is not possible, since it requires a priori knowledge 

of the reference solution. On the other hand, the quality of the conservative velocity ut 

depends only on the quality of the local Neumann boundary conditions provided by the non-

conservative i-MSFV velocity field, ˜ u t = K t ˜ p +1. As mentioned before, the error of ˜ u t  is 

only due to the neglected transversal fluxes, which are equivalent to unphysical source terms 

at the boundaries of dual cells. Therefore, the quality of ˜ u t  can be estimated from the residual 

of the non-conservative pressure field ˜ p +1, i.e. 

= (˜ r ˜ A ̃  p v+1) . (12) 

 

Based on the phase saturation distribution in the domain, the velocity error estimated by 

(12) can have a minor or major effect on the phase saturation error. For example, in the 

solution of the 2-phase Buckley-Leverett equation, two different zones are identified: (1) near 

front areas where the saturation gradients are high, and (2) behind the front area where the 

saturation gradients are low. In the i-MSFV framework, very accurate total velocities are 

required only at the front region, which is usually a very small sub-domain; while, for the rest 

of the domain, the velocity field of moderate quality can result in accurate saturation 

solutions. Therefore, it is very important to obtain an efficient strategy in the i-MSFV 

framework to define an effective pressure-residual-based criterion to guarantee the required 

accuracy in phase-saturation. This will be further investigated in our future work.  

 

Finally, it is worth mentioning that if a non-conservative velocity field is used to solve the 

saturation equation, the term f ˆ u t  in equation (11) is not zero. Therefore, to obtain accurate 

saturation solutions, very accurate total velocity fields are required not only at a very small 

sub-domain close to the saturation front, but also in a relatively big sub-domain, where the 

value of fractional flow function is significant. 
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4 NUMERICAL RESULTS 

A quarter of five-spots problem is solved in a 2D heterogeneous anisotropic medium (see 

Figure 2). The permeability in vertical direction is 20 times more than that of horizontal 

direction, i.e. ky=20kx; the computational grid contains 55x55 fine and 5x5 coarse cells. Gas is 

injected at constant rate of 10 in the lower left corner, while the upper-right corner is kept at 

constant pressure, p = 0 . In this example gravity is neglected. The viscosity ratio is 10 and the 

quadratic relative permeability curves are employed. Figure 3 shows the fine-scale reference 

saturation and pressure maps at 0.2 PVI, and figure 4 shows the pressure and gas saturation 

errors in the MSFV and i-MSFV solutions, which are defined as the absolute differences with 

respect to the fine-scale results. Pressure errors are normalized by the fine-scale pressure at 

the injection point. For this test case the original MSFV method fails to give a good result. 

The i-MSFV method, however, leads to very accurate results with only 0.7 iterations in 

average per each pressure solver call (i.e., the computational cost of i-MSFV is only 1.7 times 

that of the classical MSFV method). Figure 5 illustrates the history of the number of iterations 

employed, and figure 6 depicts the saturation errors for different residual threshold values. 

 
Figure 2: Natural logarithm distribution of the horizontal permeability kx with the imposed 5x5 coarse grid. 

 

5 CONCLUSIONS 

The i-MSFV method is extended to include the sequential implicit simulations of 

multiphase flow in heterogeneous anisotropic porous media. In this work, the i-MSFV method 

is only used for the efficient solution of the elliptic pressure equation, whereas the saturation 

equation is solved on the fine scale. At the beginning of the simulation, iterations are 

employed to improve the MSFV solutions. To minimize the need for further iterations, this 

initial solution is used to improve the MSFV system at later steps. If the pressure residual 

becomes larger than a specific threshold value, additional iterations are employed to reduce 

the residual. The numerical tests show that only a few iterations are required during the 

simulation to significantly improve the MSFV results (and in particular the saturation 

solutions) with a relatively small additional computational cost. The  overall efficiency  of  the 
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Figure 3: Fine scale reference pressure (left) and gas saturation (right) maps after 0.2 PVI.  

 
a 

 
b 

 
c 

 
d 

Figure 4: Normalized pressure (a) and gas saturation (b) errors in MSFV; and normalized pressure (c) and gas 

saturation (d) errors in i-MSFV. The simulation time is 0.2 PVI and the i-MSFV results are obtained by 

employing 0.7 iterations in average. 
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Figure 5: History of i-MSFV iterations employed during the simulation. In average, 0.7 iterations are employed. 

 
Figure 6: L2 norm of the saturation errors during the simulation time corresponding to the results of figure 4 

(left) and the i-MSFV results with different residual threshold values (right). The first number in the   

parentheses denotes the average L2 norm of the residual (normalized by that of the MSFV residual) and the 

second one denotes the average number of iterations employed during the simulation. 
 

simulations can be further improved by solving also the transport equations with the MSFV 

method
14

, and by using the adaptive MSFV residual improvement
15

. In the latter case, one can 

define more strict threshold values near front regions and moderate ones for the rest of the 

domain. 
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