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Summary. In many engineering applications, it is common to find systems that involve
transport at several scales. To study these systems it is convenient to derive models
at an intermediate level of scale between the microscale and the macroscale; this is the
average scale. This can be achieved using the method of volume averaging. The results
from this method are averaged transport equations expressed in terms of effective medium
coefficients that can be computed from the solutions of associated closure problems. Such
solutions are often written as superpositions of the so-called closure variables and the
average sources of deviation. In this work, we revisit the concept of a closure variable
based on an integral formulation in terms of Green’s functions. Our analysis demonstrates
that a closure variable represents the integration (in time and space) of the associated
Green’s functions that describe the influence of the average sources on the deviation fields
of a given property at a certain time. In this way, the Green’s functions are responsible for
capturing the essential information from the microstructure. Extensions to cases involving
transport with nonlinear reaction are also discussed.

1 INTRODUCTION

Most engineering applications involve transport across several levels of scale, which are
deeply coupled. Despite current computational capabilities, it is still generally not feasible
(or desirable) to model a complete macroscopic system (as the one depicted in Fig. 1) by
performing direct numerical simulations at the microscale. To overcome this issue, one
may derive models at an intermediate level of resolution between the microscale and the
macroscale; this is the average scale (Fig. 1). Average models consist of a set of effective
medium equations and boundary conditions that result from a systematic reduction in
the number of degrees of freedom involved in the microscale model by means of the pro-
cess of upscaling [1, 2]. In other words, the derivation of models at the average scale can
be achieved by filtering redundant information from the microscale. This is possible by
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Figure 1: Characteristic lengths of a typical engineering system.

adopting a set of scaling laws, in the form of temporal and spatial constraints and assump-
tions that bound the validity of the model [3]. This approach leads to upscaled models
containing effective medium coefficients that are the connection with the microscale.

In the method of volume averaging [2], the effective medium coefficients are often
expressed in terms of (volume and/or surface) integrals of the so-called closure variables,
which result from solving associated boundary-value problems in a representative model
of the microstructure (i.e., the unit cell). In this work, we discuss the method of volume
averaging as one approach to upscale microscale balance equations for transport in porous
media. Our particular focus is to illustrate how the closure problem solutions can be posed
in terms of Green’s functions to generalize the averaging approach. In this way, the kernel
of the microstructure information is given by the Green’s functions; while the integration
of the product of the deviation sources with the kernel defines the closure variables.
Furthermore, the integral formulation derived here can serve as the starting point for
the solution of closure problems involving nonlinear terms. These types of problems are
relevant in many fields of science and engineering, including reactive transport in porous
media, transport in biofilms, chemotaxis in contaminated aquifers, among many others.
For the sake of briefness in presentation, in the following paragraphs we will describe our
approach in general terms.

2 METHODOLOGY

2.1 Microscale model

Consider the balance equation for a given property (ψγ) in a two-phase (fluid-solid)
system, such as the porous medium sketched in Fig. 1. The fluid phase is identified as the
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γ-phase, while the rigid solid is represented by the κ-phase. For the developments that
follow we assume that the problem is linear (or can be linearized) and let the governing
differential equation for the transport of ψγ at the microscale be expressed as

λ{ψγ} = f, in the γ-phase, (1)

where f denotes a source term, which for the sake of simplicity is assumed to be known
and independent of ψγ. In Eq. 1 λ{·} denotes a given linear differential operator, which
may contain space and time derivatives and given transport coefficients.

The boundary condition at the solid-fluid interface can be written, in general, as a
jump condition [4]

ϕ{ψγ} = g, at the γ-κ interface, (2)

in which, ϕ{·} is a linear differential operator and g is an interfacial source term. The
microscale description is completed with the corresponding boundary conditions at the
entrances and exits of the macroscopic system and the initial condition, which are not
provided here for the sake of briefness in presentation.

2.2 Upscaling

To spatially smooth the microscale governing equations let us introduce a support
averaging region V (REV) of volume V (Fig. 1) [2]. In this way, the averaging region
can be decomposed according to, V = Vκ + Vγ, with Vκ and Vγ being the volumes of the
κ- and γ-phases within the REV, respectively. The radius of the averaging region (r0)
should be sufficiently large with respect to the characteristic length of the microscale (`γ)
but, at the same time, sufficiently smaller than the characteristic length of the macroscale
(L); that is, `γ � r0 � L.

In terms of the averaging region V , let us introduce the intrinsic averaging operator as

〈ψγ〉γ =
1

Vγ

∫
Vγ

ψγdV, (3)

which is related to the superficial averaging operator, 〈ψγ〉, by 〈ψγ〉γ = ε−1γ 〈ψγ〉, with εγ
being the volume fraction of the γ-phase within the averaging region.

Our next step in the analysis is to apply the intrinsic averaging operator (Eq. 3) to
the microscale governing equation (Eq. 1), in order to obtain

〈λ{ψγ}〉γ = 〈f〉γ. (4)

Upon properly interchanging differentiation and integration, this expression can be written
as

Λ{〈ψγ〉γ}+ M {ψγ} = 〈f〉γ, (5)

where the differential operator Λ{〈ψγ〉γ} contains spatial and temporal derivatives of
〈ψγ〉γ. The integro-differential operator M {·} contains the filters of information from the

3



Francisco J. Valdés-Parada, Mark L. Porter and Brian D. Wood

microscale [2]. In order to avoid expressing Eq. 5 in terms of the point variable ψγ, we
use the spatial decomposition [5]

ψγ = 〈ψγ〉γ + ψ̃γ, (6)

so that Eq 5 can be rewritten as

L {〈ψγ〉γ}+ M {ψ̃γ} = 〈f〉γ, (7)

where L {〈ψγ〉γ} = Λ{〈ψγ〉γ}+M {〈ψγ〉γ}. Note that, in general, L {·} 6= λ{·}. Our next

step in the analysis is to express the deviation fields, ψ̃γ, in terms of 〈ψγ〉γ; this process
is usually termed closure.

2.3 Closure problem

According to Eq. 6, the governing equation for ψ̃γ can be obtained by subtracting Eq.
7 from Eq. 1; the result is given by

λ{ψ̃γ}︸ ︷︷ ︸
local transport

− M {ψ̃γ}︸ ︷︷ ︸
non−local transport

= L ∗{〈ψγ〉γ}︸ ︷︷ ︸
volume sources

, in the γ-phase, (8)

where L ∗{〈ψγ〉γ} = L {〈ψγ〉γ} − λ{〈ψγ〉γ} + f − 〈f〉γ. In many application examples,
the non-local term can be assumed negligible with respect to its local counterpart on the
basis of the length-scale constraint `γ � L. Furthermore, in situations where it is not
possible to apply these simplifications, some algebraic re-arrangements can be performed
that lead to a local closure problem. For the sake of simplicity, we assume that any of
these alternatives are applicable, so that the non-local transport term is neglected in Eq.
8.

The interfacial boundary condition arises from using the spatial decomposition (Eq. 6)
in Eq. 2,

ϕ{ψ̃γ} = J ∗{〈ψγ〉γ}︸ ︷︷ ︸
surface sources

, at the γ-κ interface, (9)

where J ∗{〈ψγ〉γ} = g − ϕ{〈ψγ〉γ}. In Eqs. 8 and 9, we have identified the volume
and surface sources of deviations, which are usually linear combinations of 〈ψγ〉γ and
its derivatives. Furthermore, on the basis of the length scale constraint `γ � L, it is
reasonable to assume that the boundary conditions at the entrances and exits of the
macroscopic region have a limited range of influence. This allows solving the closure
problem only in a representative unit cell of the microstructure of the system. Under this
assumption, we impose the following boundary condition at the entrances and exits of the
unit cell (Aγe):

ψ̃γ(r + li) = ψ̃γ(r) at Aγe, i = 1, 2, 3. (10)
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Finally, we impose the following constraint〈
ψ̃γ

〉γ
= 0,∀t, (11)

which allows setting the levels of the deviation fields.

2.4 Formal solution of the closure problem

In order to formally solve the closure problem given by Eqs. 8-11, in terms of the
associated Green’s functions, G(r, t; y, τ), it is necessary to derive the corresponding initial
and boundary-value problem for G(r, t; y, τ). This problem consists of the differential
equation

λ{G(r, t; y, τ)} = δ(r− y)δ(t− τ), in the γ-phase, (12)

where δ denotes the Dirac’s delta function. Eq. 12 is subject to the homogeneous versions
of Eqs. 9-11. In addition, the Green’s functions must satisfy the causality principle

G(r, t; y, τ) = 0, for t < τ. (13)

which expresses that the Green’s function is the response (at position r and time t) to a
source located at r = y at time t = τ and not to any nonzero earlier condition.

Given the linear nature of this problem, it is possible to find a unique solution for
the fields of G(r, t; y, τ). Therefore, using standard Green’s function analysis, the formal
solution of the closure problem can be expressed as follows:

ψ̃γ(r, t) =

∫
y∈Vγ

G(r, t; y, 0)H̃(y)dy

︸ ︷︷ ︸
influence of the initial condition

+

τ=t∫
τ=0

∫
y∈Vγ

G(r, t; y, τ)L ∗{〈ψγ〉γ}(y, τ)dydτ

︸ ︷︷ ︸
influence of the volume sources

+

τ=t∫
τ=0

∫
y∈Aγκ

H [G(r, t; y, τ); J ∗{〈ψγ〉γ}(y, τ)] dydτ

︸ ︷︷ ︸
influence of the surface sources

(14)

Despite this substantial simplification, we note that the average fields are contained
in spatial and time integrals. This means that if ψ̃γ is substituted in its present form
into the upscaled model (Eq. 7), the result is a non-local macroscale equation. Non-local
equations are the least used in practice since they require the solution of a complete space
matrix at each time step. However, the length and time scale constraints

r0
L
� 1;

t∗

T ∗
� 1, (15)
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justify taking out the average terms from the integrals in the solution of ψ̃γ. Under these
assumptions, the solution of the closure problem can be written in terms of the n (volume
and surface) sources as follows

ψ̃γ =
i=n∑
i=0

biH
∗
i {〈ψγ〉γ}, (16)

where H ∗
0 {〈ψγ〉γ} = 1, so that b0 accounts for the non-average sources (e.g., the influence

of the initial condition). Since the particular mathematical structure of each source is
known, the operators H ∗

i {〈ψγ〉γ} (i ≥ 1) can be regarded as known algebraic and/or
differential operators. Finally, the variables bi (i ≥ 0) are the so-called closure variables

that map the influence of the average sources on the fields of ψ̃γ [2] and they can be
scalar, vectorial or tensorial fields. From the derivations provided above we note that bi
are kernels resulting from integrations involving the associated Green’s function. In Eq.
16 we have made an effort to provide a compact and general expression for the deviation
fields, the specific dimensionality of the closure variables are determined by each source
term. Indeed, due to the linear nature of Eqs. 8-11, it is possible to obtain Eq. 16 on the
basis of the principle of superposition. In fact, this is the approach commonly followed
in the volume averaging literature [2], which leads to the solution of n + 1 independent
problems for the computation of all the closure variables that determine the deviation
fields.

At this point, it is opportune to stress that if the closure problem involves nonlinear
terms, it is not possible, in general, to obtain explicit formal solutions, as the one given
in Eq. 16. To overcome this issue, many alternatives are possible, for example one may
expand the nonlinear term using Taylor series and conserve only the linear parts of the
expansion (i.e., linearization) or use the effectiveness factor concept for nonlinear kinetics
as explored by Wood et al.[6]. Another approach is to rely on the integral formulation
relating the linear parts of the problem to the associated Green’s function and treating the
nonlinear terms as special sources. In this form, the nonlinearities are not approximated
by linear or semi-linear models, however the price to be paid is that the formal solution
is now an implicit expression. To have a clear idea of this approach, consider the case in
which the governing differential equation for ψ̃γ is given by

λ{ψ̃γ} = L ∗{〈ψγ〉γ}+ N {ψ̃γ}, in the γ-phase, (17)

where N {·} is a nonlinear (algebraic and/or differential) operator. If one regards this
term as a source in the differential equation, one may follow the derivations provided
above to obtain a solution of the form

ψ̃γ =
i=n∑
i=0

biH
∗
i {〈ψγ〉γ}+

τ=t∫
τ=0

∫
y∈Vγ

G(r, t; y, τ)N {ψ̃γ}(y, τ)dydτ, (18)
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which is clearly not explicit. The fields of ψ̃γ may be obtained through appropriate
iterative schemes. Fortunately, the smoothing properties of the integral operators (where
the terms to be iterated are contained), allow achieving faster numerical convergence than
with traditional schemes which rely on the discretization (and thus propagation) of errors.
Notice that, in this case, the operator L ∗{·} in Eq. 17 may be nonlinear, and thus the
operators H ∗

i {·} related to volume sources will also be nonlinear. If the numerical scheme
is convergent, one may use Eq. 18 to obtain a closed form of the macroscale model. This
constitutes an advantage over the superposition method, which is constrained to linear
closure problems.

3 CLOSED UPSCALED MODEL

As a final step in the analysis, let us close the upscaled model by substituting Eq. 16
into Eq. 7; the result can be expressed as follows

F{〈ψγ〉γ} = 〈f〉γ, (19)

where F{〈ψγ〉γ} = L {〈ψγ〉γ}+ M

{
i=n∑
i=0

biH ∗
i {〈ψγ〉γ}

}
. Fortunately, in many situations

only a subset of the n+ 1 closure variables (say 0 < m < n+ 1) passes through the filters
in the operator M {·}. Analytical solutions of the Green’s functions can be obtained
in the simple geometries involved in Chang’s unit cell as reported by Ochoa-Tapia et
al. [7]. Furthermore, for spatially periodic unit cells Wood [3] used a combination of
Laplace and finite Fourier transforms in order to obtain an expression for the Green’s
functions related to dispersion in porous media. Despite these advances, it is certainly
worth pursuing the numerical computation of Green’s functions in complicated domains
for a practical and efficient prediction of the closure variables. We are currently working
on these computations and preliminary results are not presented here for the sake of
briefness.

4 CONCLUSIONS

In this work we have revisited the concept of a closure variable involved in the up-
scaling of microscale models using the method of volume averaging. According to our
analysis, a closure variable is, in general, the result of integrating (in time and space) the
influence function (i.e., the Green’s function) that captures the essential information of
the transport and geometry in the microscale. This allows expressing the deviation fields
as the sum of all the influences of the sources involved in the closure problem. In this
form, the closure variables account, in general, for the influence of the initial condition,
the volume and surface sources. The boundary conditions at the entrances and exits of
the macroscale system are not usually taken into account by the closure variables since
their influence is assumed to be of short range when there is a separation of characteristic
lengths between the microscale and the macroscale (i.e., `γ � L).
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An attractive feature of the integral formulation is the fact that for closure problems
containing n source terms, it is only necessary to solve one problem in order to compute
the associated Green’s function and from it obtain each of the n+ 1 closure variables by
performing the corresponding integration steps. This is an improvement from the typical
approach used in the volume averaging literature where the governing problem for the
spatial deviations is decomposed into n+ 1 independent closure problems. Furthermore,
the associated Green’s functions arise from solving initial and boundary-value problems
that only depend of the local information of the system captured in the representative
unit cells and are independent of the average sources. It should be emphasized that this
is possible due to the separation of length (r0 � L) and time (t∗ � T ∗) scales between
the microscale and the macroscale. The arguments presented in this work demonstrate
that the Green’s functions are the kernel of the closure variables, and hence they play
a significant role on the computation of the effective transport coefficients involved in
upscaled models.
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