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1 Introduction

Two different strategies are currently used to model multiphase flow in porous media [20]. Using
the first approach, in the case of a DNAPL migrating in an unsaturated zone, the water-oil-gas
three-phase system can be modelled by three pressure equations obtained by substituting of
Darcy’s velocity of each fluid phase into the individual mass balance equations. This system of
pressure equations can be transformed into a pressure-saturation form by using the relationship
between the capillary pressure, which is the difference between the phase pressures and the fluid
saturation. The pressure of the second and third fluid phases can then be removed by expressing
this pressure in terms of the saturation and pressure of the other phase. This latter approach is
useful when phase disappearance occurs and saturation becomes zero. The system of partial
differential equations describing a three-phase flow is highly non-linear due to the nature of the
relative permeability and capillary pressure functions needed to close the system. Alternative
forms of these governing flow equations have been investigated to develop better computational
algorithms. This has led to the fractional flow approach, which originates from the petroleum
industry. In this approach, the total fluid flow describes the individual phases as a fraction of the
total flow [6]. Through the fractional flow formulation, the immiscible displacement of oil, gas
and water can be expressed in terms of three coupled equations, namely, a mean pressure
equation [22, 23] or global pressure equation [11] usually and two saturation equations. In this
paper, a fractional three-phase flow formulation is chosen using a global pressure approach. The
construction of Total Differential (TD) three-phase data is given for the implementation of the
exact global pressure formulation. This global formulation reduces the coupling between the
pressure and saturation equations [14]. However, the developed global pressure approach only
exists for three-phase data which satisfy a TD condition. The numerical construction of TD data
such as the global mobility and global capillary pressure is achieved using C° and C' finite
elements to solve respectively an harmonic and a biharmonic problem [13, 14, 15].
Corresponding TD three-phase data are given to solve fractional flow equations using an IMPES
approach. Each saturation equation is treated by operator splitting i.e. a mixed-hybrid finite
element method for diffusion terms while discontinuous finite element deals with advection
terms. The developed model is tested on the Five-spot water flood problem and compared with
some numerical solutions.

2 Governing equations for three-phase flow in porous media

Following notations will be used for three fluid phases: j=1 stands for water, j=2 stands for oil
and j=3 stands for gas. We recall here the equations associated with the reformulated three-phase
flow using the TD condition.
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2.1 Global pressure equation

Classical numerical solutions using a fractional flow formulation lead to a ““ pressure equation”
with respect to one of the three phase pressures, for example the oil pressure , and two
“saturation” equations with respect to and . Let us introduce the volum factor evaluated at a
given global pressure level p satisfying py=p=p; :

B,(p)=p,(p)p;(p"), (1
for j=1,2,3 with the reference pressure and the density of the fluid phase j. For a saturation
distribution, Muskat’s law 1s currently used to represent the volumetric flow vector for fluid phase
j at the REV scale [3]:

d)]:_d/(P/)krj(S)K(VP,_pJ(P/)gVZ), ()
where d;, kr;, pj, Z, g and K are respectively the relative phase mobility, the relative phase
permeability, the dynamic viscosity, the depth, the gravity constant and the absolute
permeability. Summing up mass balance equations for j=1,2,3 leads to the global pressure
equation:

3 3

Z(eT B,5)+V (@=20,. 3)
j=1 j=1

where @ is the porosity, is the source/sink term of jth phase. The global pressure P is defined as

related to the oil pressure and saturation S=(S,,S;) by:

P=P,+P5(S,P), 4)

where P? is a global capillary function. This function has to satisfy a “total differential” (TD)

condition [11, 13]. When this condition holds, the volumetric flow rate q is re-written in a Darcy
law form:

g=—dK (WVP-pgVZ)., (5)
with w=1-0P%/0p , d, f, f;, p are respectively the compressibility factor, the global

mobility, the water and gas fractional flows and the global density expressed as function of the
pressure level p :

d(s, p=kr (s5)d,(p)+kr,(s)d,(p)+kry(s)d;(p)
fis.p)=kr;(s)d (p)ld(s,p), j=12.3

p=3_p,f, ©)
3
Zj=1 fi=1

We assume that @ and K are only functions of space. In the exact global pressure formulation,
phase pressure levels are used. Based on the capillary pressure conventions, relative phase

mobilities are written such as d]:d](p2+Pi2(sl)) ,d,=d,(p,), d3=d3(p2+P32(s3)) , and
similarly for 0,,0,,P5 . Here, Piz is the water-oil capillary pressure function and Piz is the
gas-oil capillary pressure function.

2.2 Water and gas saturation equations

The corresponding water and gas saturation equation satisfying the TD condition can be written
for j=1,3 :
0

(pE(Bij)—l—v-(qj‘):Qj’

! ; ~“l-w @
q,=w" qu—dij.(Vng+g(Apj+pw—)Vz),
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with ¢ the jth phase volumetric flow rate and Ap]:( l_fj)(pz_pj)+fj+1(pj+1_p2) . We
introduced the following notation ng =P£2—Pf . For three-phase flows modelling, one can see
that some secondary variables such as fractional flows, global mobility d, global capillary
function Pf need to be quantified in order to satisfy the TD condition [13] and thus to solve

three-phase reformulated flow. In the next section, we give a short description of the practical
approach used to interpolate TD three-phase data on the water-oil-gas diagram 7.

3 Description of the TD-interpolation approach and required data

In the exact global pressure formulation, d, fi, f> fg,[_) are functions expressed from the oil
pressure level (see equation (4)). Initial two-phase flow data are set on water-oil side, gas-oil
side and water-gas side 7'® (see Figure 1). We solve first Non-Linear Initial Value Problems
on the three two-phase sides of the ternary diagram 7T with an Ordinary Differential Equation
(ODE) Solver [18, 26]. Therefore, global capillary function is calculated on the three two-phase
boundaries. In order to satisfy the TD condition on the boundaries, the global capillary function
needs to be slightly modified on the gas-oil side to provide an exact matching value at the gas
vertex [13, 18]. Then the three two-phase global mobilities d on boundaries are computed in (6)
with P replaced by P;. The global mobility is then obtained from previous Dirichlet boundaries
condition by solving an harmonic equation on 7 by means of C° piecewise linear finite elements.
In the last step the global capillary pressure is extended to the whole ternary diagram 7. It is
necessary to complete the Dirichlet conditions by Neumann conditions (see Figure 1).
53

32 1,32 p32
N kry®, kry=, P

Pi(s)

«— —— 83

" s . B 7 ) \':-
S, water) ”l &2 kri2, P12 ol
Figure 1 : Ternary diagram T with two-phase required data.

A biharmonic equation over 7 is needed to provide a continuous global pressure field. It is solved
by a C' Hsieh-Clough-Tocher finite element method [5, 16], which ensure that the fractional

flows derived from P¢ are continuous over the ternary diagram. For each fluid phase, the
corresponding fractional flow is then derived for i=1,3 using:
fi(s,p)Z(an/Gsi(s,p))/(dPiZ/dsl.(si)) (10)
with oil fractional flow given by the closure relation . The global mobility d(s,p), fractional flows
f j(s, p) and global capillary function Pf(s, p) are known as secondary variables and allow
to solve global pressure equation and saturation equations.
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4 Numerical resolution of the pressure and saturation equation

An IMPES scheme is used and involves the sequential solution of the pressure equation and
saturation equation. Time Operator splitting is used to solve transport-like saturation equation.
While the global pressure equation reformulated in a diffusive form is fully implicitly
formulated, the explicit form is used for the advective part of the saturation equation under the
Courant criterion. The diffusive terme is solved using mixed-finite element formulation.

4.1 Mixed-Finite Element method. A mixed-hybrid method is applied to the global pressure
equation (3). The pressure equation can be split into two equations, one for the global flux and
another one for the mass balance equation which is :

32

, oP , ; 0S8, "
(,DB3S3(A)E+QDBSS3(A)7+¢(B3—1)E+V.(q):Qt (11)

with B;ZGBS/ 0P, . One remarks that for an incompressible two-phase flow, i.e. w=1 and
B,=1 | the resulting two equations can be re-written in a simplified form such as:
\% -(q ) =0,

qzdwK(VP—ApVZ)

The weak formulation of (12) is performed with test functions using lowest order Raviart-

Thomas space for an element E when represents the so-called mixed finite element formulation.
Applying the incompressibility condition, the discretized form of the variational equations is then
1 -
> o, w. K 'w dE=P, [ V.wdE=Y TP [ w.ngydEj+A .| Vz.w.dE,
i E E J

wE dE Ej E

(12)

(13)

=5y B =0, =G
>0, [ V.wdE=|E|Q, ,.
Jj E

The continuity of fluxes across element edges is applied. This means the Qg expressions in
(13) are isolated and substituted in the discretized element balance equations. The element global
pressure Pr are extracted in the element balance equation and substituted in the flux continuity
equations. Thus global pressure and fluxes are eliminated and the resulting mixed-hybrid system
has only the Lagrange multipliers TPy i.e. the edge global pressure. The corresponding system
matrix is positive definite and solved using a conjugate gradient method. Taking into account
compressibility effect and neglecting capillary effects in the variational term, the weak
formulation of the mass balance equation (11) gives an element mid-point expression of the
global pressure field is :

9lEIB,w  @(1-B,)

P+
At E At

prtl_ At Sn+1_ (14)

n
3,E S3,E

—1ppnt+l -1
, +ZBU TPy, —ApEZ B; G +IE|Q,
qo|E|B3w+aEAt ij i ‘

and A pEZg;)E/ W . The edge global mobilities to be used by the mixed-hybrid method are

derived from the upstream saturations of the previous time step. The pressure field and the fluxes
over the element edges are obtained and used in saturation equations.

4.2 Discontinuous Galerkin Finite Element method

The discontinuous Galerkin method is applied to deal with the advective part of saturation
equations. The element saturation computed explicitly from the advective term is fully
determined using a slope limiter based on the Van Leer’s MUSCL limiter introduced by Chavent
and Jaffré [11]. An efficient geometric approach is used for general trianglar mesh by avoiding
the iterative procedure of the minimization problem [30]. The weak formulation of the advective
part of balance equation (7) is obtained using a test function w; :
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0B SF
cpZ ”’fwwdE fol a.VwdE=3 [ f1 w;.q.nydEf . (15)

I Ejf
Wlth S i 1s ]—th degree of freedom of the [-phase saturation on element E. The three unknowns
assoc1ated with the corresponding interpolations functions are then reformulated as :

E E E _

Sz,1< t)= Shl’ W1<x,}’)—1,

Sp,(t)=058, 1ox, wy (x,y)=x—%,, (16)
553(1‘):6551/8)1, Wf(x’)’):)’_ygy

with S f j the average value of the [-th phase saturation on element E, and its two deviations in
each space direction. The approximate solution § f ; 1s expressed with linear basis function w; on

E. Assuming that g.n E] is constant through the edge Ej, one has:

ffl gWi-d-n dE]_|EEJffI E,WldEJ , (17)

and the upstream fractional flux [ ;i are taken as J1g gng=0 and f; g if 4 <0

For the explicit advection scheme, the CFL criterion has to be fullfilled for all elements of the
domain. The geometric slope limiting procedure is used to avoid unphysical oscillations in the
numerical solution. The saturation S /. mi at the mid-point (x,,,¥,:) of edge Ei is obtained such
as:

Sl,mizgf,l—i_agf,l/ax(xmi_xE)—i_an,l/ay(ymi_j)E) : (19)

The limiting procedure is only preformed on the two deviations in order to obtain the
reconstructed deviations values (855‘ 10x, Sfy ! 6y) . The average value S fl ; 1s kept unchange

to preserve local mass balance.

S Study case: Five spot waterflood problem in a homogeneous porous medium

The five-spot water flood problem comprises two cases and allows also to test the influence of
grid orientation on the numerical results (Fig. 2). The study case assumes the flow of two
immiscible and incompressible fluids in a homogeneous medium without capillarity. The
numerical study deals with the displacement of a non-aqueous phase liquid (oil) by water in a
square-shape domain. Similarly to the Buckley-Leverett case, there is no water initially present in
the system. The domain is discretized by 16x16, 32x32 and 64x64 regular triangular elements.
The first case (see Figure 2a) is called ‘diagonal grid’ case where water is injected at the lower
left corner of the domain. The principal direction is diagonal to the grid. In the second case called
‘parallel grid’ case, water is injected at the lower left and upper right corner and thus allow oil
leaving the domain at the upper left and lower right corner. The Todd relative permeability-

saturation relationship is used with a viscosity ratio of g,/ u,=¥f
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Figure 2 : Five-spot waterflood problem: (a) diagonal grid; (b) parallel grid
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Figure 3 : Calculated water saturation in the diagonal grid case 16x16 with two different grid orientation :
(a) diagonal (left), (b) alternate (right) after 200 days
i

09r

0ar

0T

0

0.9 1
Figure 4 : Calculated water saturation in the diagonal grid case 16x16 (left) and 64x64 grid case (right)
with an opposite diagonal orientation after 200 days.
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Figure 5 : Cross-section of the water saturation profile along y=x in the diagonal grid case 16x16 (left)
compared with MUFTE_UG and solution in Helmig, 1997 [20], parallel case for 32x32 grid after 200 days.

Figures 3, 4 and 5 show the numerical results obtained. The reformulated global pressure
formulation combined with the chosen numerical schemes does not have significant numerical
transverse diffusion due to grid orientation. For both parallel and diagonal grid cases, the water
saturation front propagates faster along boundaries of the square than in direction of the diagonal.
For a fine 64x64 grid, the influence of grid orientation disappears and we get a undeformed
quarter-circle with a good sharp-front of the water saturation. A numerical comparison with the
16x16 solution given by Helmig, 1997 [20] and with MUFTE_UG is shown in figure 5. Our
mixed hybrid-discontinuous finite element (MHFE/DFE) used for the global pressure
formulation converges toward the two other numerical solutions.

6 Conclusion

The reformulation of the fractional flow equation for three-phase flow modelling using a TD
condition and the re-writing of three-phase compressible flow equations in a more suitable
fractional form (see (5) and (7)) were presented. A first C°/C' parametrization was performed to
obtain TD three-phase secondary variables used in the flow simulator. Then numerical schemes
such as mixed-hybrid and discontinuous finite element were used to discretize both the global
pressure and saturation equation. First numerical results obtained are presented in the case of a
two-phase flow problem. Further research work will focus on testing of the developed flow
simulator on more complex situations.
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