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Summary. We present numerical comparisons for the simulation of unsteady 2D shallow 
water flows over topography with wet/dry fronts, between well-balanced cell-centered and 
node-centered formulations of a finite volume high-resolution algorithm. In both formulations 
we utilize Roe’s Riemann solver, while second-order spatial accuracy is achieved with 
MUSCL-type reconstruction techniques. Grid refinement studies are emphasized. 

 
 
1 INTRODUCTION 

The current-day unstructured mesh 2D hydrodynamics codes rely, almost exclusively, on 
formally second order accurate FV discretizations in order to approximate numerically the 2D 
non-linear shallow water equations (NSWE). The NSWE are accepted to mathematically 
describe a wide variety of free surface flows under the effect of gravity. FV schemes can be 
categorized as of the cell-centered or the node-centered type. For the CCFV approach, the 
volumes used to satisfy the integral form of the equation are the mesh elements (triangles) 
themselves while for the NCFV approach the volumes are elements of the mesh dual to the 
primal computational mesh (a mesh connecting the barycenters of the triangles of the primal 
mesh). Any numerical approach for the approximation of the NSWE should embody the 
following necessary properties: be of high-order accuracy (in space and time); has the ability 
of simulating discontinuous flows accurately; be conservative; enable various practical 
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inflow/outflow conditions; incorporate complex topography and has the ability of modeling 
moving wet/dry interfaces. The satisfaction of the last two properties constitute particular 
challenging problems for all numerical methods. Much research effort has been recently 
devoted in deriving FV schemes on unstructured meshes that resolve numerically these 
problems, we refer to1,2 and references therein. With regard to the first problem, several 
numerical and mathematical treatments have been proposed in the literature for balancing the 
flux gradient and the source terms in order to properly compute stationary or almost stationary 
solutions. This property is known as well-balancing.  Both FV approaches considered in this 
work can be considered as state of the art for the given flow problems and incorporate all the 
latest technology in properly treating the above mentioned problems and satisfy all the desired 
properties mentioned above. Relative advantages of each of the two approaches have been 
presented in the literature but there exists no consensus about which approach offers more 
advantages. One of the difficulties in assessing the two approaches is that, comparative 
calculations in a controlled environment, i.e., computations from the same codes, same 
degrees of freedom, computational parameters and comparisons on the same test problems, to 
the best of our knowledge, do not exist. Results should be compared to analytical solutions or 
experimental data, or at least compared to computational results obtained independently. In 
addition, grid dependence in the solution should always be reported.   
   In this work, we provide a controlled environment for a fair and extensive comparison 
between the two approaches. Grid refinement studies are emphasized on 2D grids range from 
regular triangular grids to irregular ones. The main targets in this work are: (i) to rigorously 
verify the robustness and accuracy of the presented FV formulations and (ii) to carefully study 
the relative performance of the two approaches in order to draw fair and firm conclusions in 
terms of applicability and performance.  

2 THE SHALLOW WATER SYSTEM OF EQUATIONS 
The well-known system of the 2D NSWE written in conservation law form read: 
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 with [ ],u u v Τ= the velocity field, g the gravitational acceleration, ( ), , 0h x y t ≥ the flow depth. 

The source term ( ) [ ]L U R S= + models the effects of the shape of the topography and friction 

on the flow. By denoting with ( ),B x y  the bed topography elevation (therefore H h B= +  is 

the water free surface level), the geometrical source term is given as R R Rb b
x y= + where 
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The source term component S includes the bed friction stresses, given as, 
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where f
xS and f

yS are the friction loss slopes and mn  the Manning roughness coefficient. 

3 GRID TERMINOLOGY AND THE FINITE VOLUME FORMULATIONS 

An initial conforming triangulation of 2Ω ⊂ composes the so-called primal mesh. The 
median-dual partition is used to generate control volumes for the NCFV scheme.  For the 
CCFV the primary triangular cells serve as control volumes. The locations of discrete 
solutions are called data points while the cell boundaries are called faces and the term edge 
refers to the line connecting the neighboring data points. The grids used can be classified as 
regular or irregular ones.  Four types of grids are considered here: (I) Equilateral triangular; 
(II) Regular triangular, derived from quadrilateral grids where cells are divided by the 
diagonals in four cells; (III) Regular triangular grids derived from quadrilateral grids by the 
same diagonal splitting; and (IV) Randomly perturbed (distorted) grids, generated by 
perturbing the grid nodes, of a type-(I) equilateral grid, from their original positions by 
random shifts. The representative grid types are shown in Fig. 1. 

 
Figure 1: Grid Types (I to IV) 

 
The major requirement, in order to perform convergence studies and fair comparison 

between the two types of schemes, for a sequence of refined grids is to satisfy the consistency 
refinement property8. This property requires the maximum distance across the grid cells to 
decrease consistently with increase of the total number of grid data points N. In particular the 
maximum distance should tend to zero as 1 2N − . As such, this property enables meaningful 
assessment of the asymptotic order of convergence. For a given computational domain, and 
without loss of generality, with dimensions x yL L×  we define a subdivision of xL by xN  line 
segments, x xx L NΔ = . As such, we define the characteristic length for each grid as

( )N x yh L L N= × . For a consistently refined grid we half xΔ  and it follows that, for the 

new refined grid 2N Nh h′ and 4N N′ . For a fair comparison between NCFV and CCFV 
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schemes we need to derive equivalent meshes based on the degrees of freedom i.e. grid data 
points N. As such, equivalent grids can be defined as those having the same Nh , keeping in 
mind that for a CCFV scheme N corresponds to the number of triangular cells in the mesh 
while for a NCFV scheme to the mesh nodes. 
  Both FV schemes constructed in this work are based on the integral form of (1) over a 
general computational domain Ω: 

( ) .U H Ld d d
t
Ω Ω Ω

∂
Ω + ∇ ⋅ Ω = Ω

∂ ∫∫ ∫∫ ∫∫  (5)

By application of Gauss's divergence theorem to the flux integral and denoting U I the 
average value of the conserved quantities over the volume at a given time, from equation (5) 
the following conservation equation can be written for every I-cell 

( )1 1 ,U F Γ L
I I

I
x y

I I
n n d d

t
Γ Ω

∂
= − + Γ + Ω

∂ Ω Ω∫ ∫∫  (6)

where ,n x yn n
Τ

⎡ ⎤= ⎣ ⎦ is the outward unit normal vector, and I  becomes P for the NCFV and p 
for the CCFV, as depicted in Fig. 2.  

                    
   
                                      Figure 2: NCFV (left) and CCFV (right) control volumes  
 
Additionally, IΩ  and IΓ  become PC  and PC∂ for the NCFV and pT

 
and pT∂ for the CCFV 

respectively. By introducing the numerical flux vectors Φ and topography contribution term 
Ψ at midpoints M  (Fig. 2), the semi-discrete form of (6) becomes: 

,
1 1 1 ,U Φ Φ ΨI

k k bound k
I I Ik k kt

∂
= − − +

∂ Ω Ω Ω∑ ∑ ∑  (7)

where k becomes PQ K∈ , the set of neighboring nodes to P for NCFV, and 

{ }, :p p p q pq K K q T T is a face of T∈ = ∈ ∂ ∩∂  for the CCFV. The numerical flux is 

computed using the well-known Roe's approximate Riemann solver2,3,4, while topography 
source vectors are discretized in an upwind fashion, as to satisfy the C-property5,4,2. 
    Second order spatial accuracy is achieved in both formulations using a MUSCL-type 
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reconstruction of the primitive variables W=[h,u,v], combined with the Van Albada edge-type 
slope limiter2. For the NCFV the reconstructed variables at the midpoint of edge PQ are: 

( ) ( )1 1, ,
2 2

L R
PQ P PQ P PQ Q PQ Qw w LIM w w w LIM w= + ⋅∇ = − ⋅∇r r  (8)

where PQr  is the vector connecting nodes P and Q, LIM is the limiter function and the 
gradient is computed using the Green-Gauss linear reconstruction and the stencil of Fig. 3, 
with an edge-based formulation2. For the CCFV formulation, using a similar approach, by 
projecting along the line connecting the volume centers, the reconstructed variables are given 
(taking into account that we wish to use the same edge-type slope limiter): 

( ) ( ), ,, ,r rL R
D p p pD p D q q Dq qw w LIM w w w LIM w= + ⋅∇ = − ⋅∇  (9)

where D is the intersection point of face p qT T∂ ∩∂ with pq , which in general does not 
coincide with M. For this reason a novel correction is applied in this work to correct this 
inconsistency, which is responsible for a decrease in the order of convergence for type of 
grids where the distance between D and M is large. Eq. (9) then reads (Fig. 4): 

, ,, .r rL L R R
p D p DM p q D q DM qw w w w w w= + ⋅∇ = + ⋅∇  (10)

     For the CCFV two different stencils are used for the Green-Gauss linear gradient 
computation, the compact one, that uses only the three neighboring triangles of pT , and the 
wide one which uses all the triangles with a common vertex with pT  (Fig. 3). 

 
Figure 3: Stencils for gradient calculation for the NCFV (left), CCFVc2 (center) and CCFVw2 (right) 

                                   
Figure 4: Proposed reconstruction for the CCFV scheme 
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For the boundary conditions, proper ghost cells are used for the CCFV scheme and the weak 
formulation is used for the NCFV boundary nodes. 

     4 SOURCE TERMS AND WET/DRY FRONT TREATMENT 
While the C-property holds for the 1st order schemes, i.e. if the L and R values are not 

reconstructed, this is not the case for the second order MUSCL discretization. As such, and 
following6 for the CCVF approach and2 for the NCFV approach, a term is added to the source 
term discretization for maintaining the correct balance. 

In the boundary defined by a wet/dry front a special treatment is needed in order to 
accurately model the transitions between wet and dry areas while at the same time maintain 
second order spatial accuracy. The following issues have been addressed: (a) Identification of 
dry cells: a tolerance parameter depending on the mesh characteristics is used7; (b) Consistent 
depth reconstruction: reconstructed values at the wet/dry interface are computed as to satisfy 

h B∇ = −∇ ; (c) Conservation of the flow at rest in the presence of  dry regions:  The bed slope 
in the computation of Ψ in (7) is redefined3 as to satisfy an extended C-property1,2; (d) Flow 
in motion over adverse slope: Applying the redefinition in (c) then the numerical fluxes at the 
wet/dry interface are computed assuming temporarily zero velocity1,2; (e) Mass conservation: 
The error due to possible negative depths or due to the imposed threshold are summed and 
added properly into the entire computational domain4,8. 

In order to handle the friction terms in (4) a separate implicit formulation4 was applied 
inside a 4-step, 2nd order Runge-Kutta method used for time marching2. 

     5 NUMERICAL RESULTS AND DISCUSSION 
We first consider a particular member of a family of 2D exact potential solutions, which 

satisfies the frictionless steady state over topography7,8. The asymptotic order of convergence 
results, for the error, on the 4 different types of grids and for the three schemes are presented 
in Fig. 5. For the NCFV scheme, all 4 grids provided identical convergence results with a rate 
higher than 2, demonstrating the independence of the corresponding scheme from the grid 
type used. For the CCFVc2 (compact gradient stencil with the proposed modified 
reconstruction) all grids provided almost identical slopes but for two of them (III and IV) 
higher errors were obtained. These differences are attributed to the numerical boundary 
conditions (implemented using ghost cells), where large distances between points D, M (Fig. 
4) are present (especially for type III). The convergence slopes for the CCFVw2 scheme 
(wide gradient stencil with the proposed modified reconstruction) are higher, compared to the 
CCFVc2 case, which is attributed to the fact that the large gradient stencil allows for a more 
accurate computation of the (unlimited) additional terms in Eq. (10). The results concerning 
type III grid are not improved, as the compact gradient stencil is always used on the boundary 
triangles even for CCFVw2 scheme. Similar convergence results were obtained respectively 
for the hu, hv conserved variables. 

The second case considered is Thacker's planar analytic solution2 which includes wetting 
and drying, and the corresponding convergence results are exposed in Fig. 6. Similarly to the 
first case, for the NCFV scheme all 4 grids provided identical convergence results, with a 
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mean rate around 2. For the CCFVc2 scheme type II, III grids resulted in higher errors than I, 
IV grids, which are reduced with the CCFVw2 scheme, for the same reason as for the first 
case considered. The higher errors of type II grid are due to the large distance between points 
D, M for this type of grid. We note here that, for both test cases considered, the differences 
between the asymptotic rate of convergence for the various types of girds for the CCFV 
schemes (compact and wide) without using the proposed modification in gradient 
reconstruction (Eq. 10) were much more pronounced (not shown here for brevity). 

 
Figure 5: Convergence results for the 2D potential steady state case over topography (L1 norm). 

 

Figure 6: Convergence results for the Thacker's planar case (L1 norm).  

 

Figure 7:  Simulation for the Malpasset case with the NCFV scheme, at times  1200, 1600, and 2400sec. 

The simulation of Malpassed4 dam breach was used to evaluate the differences of the three 
schemes in a field test case. Fig. 7 contains simulation results using the NCFV scheme. The 
corresponding results for the two CCFV schemes were almost identical. All simulations have 
been conducted with the same triangular grid (provided by EDF) and nm=0.033. Comparisons 
with measured data, concerning water arrival times to the positions of three electric 
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transformers, and the maximum free surface elevation at certain positions measured by the 
police, are presented in Fig. 8. All three schemes provided accurate and comparable results, 
with the NCFV scheme showing slightly better agreement with the field data, although the 
results were obtained with half the degrees of freedom of the CCFV schemes (corresponding 
to a much lower computation time). Taking also into account the simplicity in the 
implementation of boundary conditions (without the use of ghost cells), and its independence 
from the grid type (for the typical grids used), the NCFV scheme seems to be a better choice 
for the type of problems considered in this work. 

 
Figure 8: Comparisons with measured data for the Malpasset field test case. 
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